Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 201: 107892, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37490823

RESUMO

Arbuscular mycorrhizal (AM) fungi could mitigate individual drought and heat stress in host plants. However, there are still major gaps in our understanding of AM symbiosis response to the combined stresses. Here, we compared seven AM fungi, Rhizophagus irregularis, Funneliformis mosseae, Funneliformis geosporum, Funneliformis verruculosum, Funneliformis coronatum, Septoglomus deserticola, Septoglomus constrictum, distributed to many world regions in terms of their impacts on tomato endurance to combined drought and chronic heat as well as combined drought and heat shock. A multidisciplinary approach including morphometric, ecophysiological, biochemical, targeted metabolic (by ultrahigh-performance LC-MS), and molecular analyses was applied. The variation among AM fungi isolates in the enhancement in leaf water potential, stomatal conductance, photosynthetic activity, and maximal PSII photochemical efficiency, proline accumulation, antioxidant enzymes (POD, SOD, CAT), and lowered ROS markers (H2O2, MDA) in host plants under combined stresses were observed. S. constrictum inoculation could better enhanced the host plant physiology and biochemical parameters, while F. geosporum colonization less positively influenced the host plants than other treatments under both combined stresses. F. mosseae- and S. constrictum-associated plants showed the common AM-induced modifications and AM species-specific alterations in phytohormones (ABA, SA, JA, IAA), aquaporin (SlSIP1-2; SlTIP2-3; SlNIP2-1; SlPIP2-1) and abiotic stress-responsive genes (SlAREB1, SlLEA, SlHSP70, SlHSP90) in host plants under combined stresses. Altogether, mycorrhizal mitigation of the negative impacts of drought + prolonged heat and drought + acute heat, with the variation among different AM fungi isolates, depending on the specific combined stress and stress duration.


Assuntos
Micorrizas , Solanum lycopersicum , Micorrizas/fisiologia , Simbiose/fisiologia , Raízes de Plantas/metabolismo , Secas , Peróxido de Hidrogênio/metabolismo , Resposta ao Choque Térmico
2.
Sensors (Basel) ; 19(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744150

RESUMO

Grafting by vegetables is a practice with many benefits, but also with some unknown influences on the chemical composition of the fruits. Our goal was to assess the effects of grafting and storage on the extracted juice of four orange-fleshed Cantaloupe type (Celestial, Donatello, Centro, Jannet) melons and two green-fleshed Galia types (Aikido, London), using sensory profile analysis and analytical instruments: An electronic tongue (E-tongue) and near-infrared spectroscopy (NIRS). Both instruments are known for rapid qualitative and quantitative food analysis. Linear discriminant analysis (LDA) was used to classify melons according to their varieties and storage conditions. Partial least square regression (PLSR) was used to predict sensory and standard analytical parameters. Celestial variety had the highest intensity for sensory attributes in Cantaloupe variety. Both green and orange-fleshed melons were discriminated and predicted in LDA with high accuracies (100%) using the E-tongue and NIRS. Galia and Cantaloupe inter-varietal classification with the E-tongue was 89.9% and 82.33%, respectively. NIRS inter-varietal classification was 100% with Celestial variety being the most discriminated as with the sensory results. Both instruments, classified different storage conditions of melons (grafted and self-rooted) with high accuracies. PLSR showed high accuracy for some standard analytical parameters, where significant differences were found comparing different varieties in ANOVA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...