Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(8): 083401, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709729

RESUMO

We investigate the photoassociation dynamics of exactly two laser-cooled ^{85}Rb atoms in an optical tweezer and reveal fundamentally different behavior to photoassociation in many-atom ensembles. We observe nonexponential decay in our two-atom experiment that cannot be described by a single rate coefficient and find its origin in our system's pair correlation. This is in stark contrast to many-atom photoassociation dynamics, which are governed by decay with a single rate coefficient. We also investigate photoassociation in a three-atom system, thereby probing the transition from two-atom dynamics to many-atom dynamics. Our experiments reveal additional reaction dynamics that are only accessible through the control of single atoms and suggest photoassociation could measure pair correlations in few-atom systems. It further showcases our complete control over the quantum state of individual atoms and molecules, which provides information unobtainable from many-atom experiments.

2.
Sci Rep ; 10(1): 15052, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929106

RESUMO

We numerically demonstrate atomic Fabry-Perot resonances for a pulsed interacting Bose-Einstein condensate (BEC) source transmitting through double Gaussian barriers. These resonances are observable for an experimentally-feasible parameter choice, which we determined using a previously-developed analytical model for a plane matter-wave incident on a double rectangular barrier system. Through numerical simulations using the non-polynomial Schödinger equation-an effective one-dimensional Gross-Pitaevskii equation-we investigate the effect of atom number, scattering length, and BEC momentum width on the resonant transmission peaks. For [Formula: see text]Rb atomic sources with the current experimentally-achievable momentum width of [Formula: see text] [[Formula: see text]], we show that reasonably high contrast Fabry-Perot resonant transmission peaks can be observed using (a) non-interacting BECs, (b) interacting BECs of [Formula: see text] atoms with s-wave scattering lengths [Formula: see text] ([Formula: see text] is the Bohr radius), and (c) interacting BECs of [Formula: see text] atoms with [Formula: see text]. Our theoretical investigation impacts any future experimental realization of an atomic Fabry-Perot interferometer with an ultracold atomic source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...