Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7626, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993456

RESUMO

Atom-interferometric quantum sensors could revolutionize navigation, civil engineering, and Earth observation. However, operation in real-world environments is challenging due to external interference, platform noise, and constraints on size, weight, and power. Here we experimentally demonstrate that tailored light pulses designed using robust control techniques mitigate significant error sources in an atom-interferometric accelerometer. To mimic the effect of unpredictable lateral platform motion, we apply laser-intensity noise that varies up to 20% from pulse-to-pulse. Our robust control solution maintains performant sensing, while the utility of conventional pulses collapses. By measuring local gravity, we show that our robust pulses preserve interferometer scale factor and improve measurement precision by 10× in the presence of this noise. We further validate these enhancements by measuring applied accelerations over a 200 µg range up to 21× more precisely at the highest applied noise level. Our demonstration provides a pathway to improved atom-interferometric inertial sensing in real-world settings.

2.
Phys Rev Lett ; 125(10): 100402, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955338

RESUMO

We show that the inherently large interatomic interactions of a Bose-Einstein condensate (BEC) can enhance the sensitivity of a high precision cold-atom gravimeter beyond the shot-noise limit (SNL). Through detailed numerical simulation, we demonstrate that our scheme produces spin-squeezed states with variances up to 14 dB below the SNL, and that absolute gravimetry measurement sensitivities between two and five times below the SNL are achievable with BECs between 10^{4} and 10^{6} in atom number. Our scheme is robust to phase diffusion, imperfect atom counting, and shot-to-shot variations in atom number and laser intensity. Our proposal is immediately achievable in current laboratories, since it needs only a small modification to existing state-of-the-art experiments and does not require additional guiding potentials or optical cavities.

3.
Nat Commun ; 10(1): 1889, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015406

RESUMO

The complex collisional properties of atoms fundamentally limit investigations into a range of processes in many-atom ensembles. In contrast, the bottom-up assembly of few- and many-body systems from individual atoms offers a controlled approach to isolating and studying such collisional processes. Here, we use optical tweezers to individually assemble pairs of trapped 85Rb atoms, and study the spin dynamics of the two-body system in a thermal state. The spin-2 atoms show strong pair correlation between magnetic sublevels on timescales exceeding one second, with measured relative number fluctuations 11.9 ± 0.3 dB below quantum shot noise, limited only by detection efficiency. Spin populations display relaxation dynamics consistent with simulations and theoretical predictions for 85Rb spin interactions, and contrary to the coherent spin waves witnessed in finite-temperature many-body experiments and zero-temperature two-body experiments. Our experimental approach offers a versatile platform for studying two-body quantum dynamics and may provide a route to thermally robust entanglement generation.

4.
Phys Rev Lett ; 123(26): 260402, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31951434

RESUMO

We experimentally realize a highly tunable superfluid oscillator circuit in a quantum gas of ultracold atoms and develop and verify a simple lumped-element description of this circuit. At low oscillator currents, we demonstrate that the circuit is accurately described as a Helmholtz resonator, a fundamental element of acoustic circuits. At larger currents, the breakdown of the Helmholtz regime is heralded by a turbulent shedding of vortices and density waves. Although a simple phase-slip model offers qualitative insights into the circuit's resistive behavior, our results indicate deviations from the phase-slip model. A full understanding of the dissipation in superfluid circuits will thus require the development of empirical models of the turbulent dynamics in this system, as have been developed for classical acoustic systems.

5.
Phys Rev Lett ; 119(19): 193601, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219523

RESUMO

Useful quantum metrology requires nonclassical states with a high particle number and (close to) the optimal exploitation of the state's quantum correlations. Unfortunately, the single-particle detection resolution demanded by conventional protocols, such as spin squeezing via one-axis twisting, places severe limits on the particle number. Additionally, the challenge of finding optimal measurements (that saturate the quantum Cramér-Rao bound) for an arbitrary nonclassical state limits most metrological protocols to only moderate levels of quantum enhancement. "Interaction-based readout" protocols have been shown to allow optimal interferometry or to provide robustness against detection noise at the expense of optimality. In this Letter, we prove that one has great flexibility in constructing an optimal protocol, thereby allowing it to also be robust to detection noise. This requires the full probability distribution of outcomes in an optimal measurement basis, which is typically easily accessible and can be determined from specific criteria we provide. Additionally, we quantify the robustness of several classes of interaction-based readouts under realistic experimental constraints. We determine that optimal and robust quantum metrology is achievable in current spin-squeezing experiments.

6.
Phys Rev Lett ; 118(15): 150401, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28452550

RESUMO

Although SU(1,1) interferometry achieves Heisenberg-limited sensitivities, it suffers from one major drawback: Only those particles outcoupled from the pump mode contribute to the phase measurement. Since the number of particles outcoupled to these "side modes" is typically small, this limits the interferometer's absolute sensitivity. We propose an alternative "pumped-up" approach where all the input particles participate in the phase measurement and show how this can be implemented in spinor Bose-Einstein condensates and hybrid atom-light systems-both of which have experimentally realized SU(1,1) interferometry. We demonstrate that pumped-up schemes are capable of surpassing the shot-noise limit with respect to the total number of input particles and are never worse than conventional SU(1,1) interferometry. Finally, we show that pumped-up schemes continue to excel-both absolutely and in comparison to conventional SU(1,1) interferometry-in the presence of particle losses, poor particle-resolution detection, and noise on the relative phase difference between the two side modes. Pumped-up SU(1,1) interferometry therefore pushes the advantages of conventional SU(1,1) interferometry into the regime of high absolute sensitivity, which is a necessary condition for useful quantum-enhanced devices.

7.
Phys Rev Lett ; 113(2): 020407, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062148

RESUMO

A "no-knowledge" measurement of an open quantum system yields no information about any system observable; it only returns noise input from the environment. Surprisingly, performing such a no-knowledge measurement can be advantageous. We prove that a system undergoing no-knowledge monitoring has reversible noise, which can be canceled by directly feeding back the measurement signal. We show how no-knowledge feedback control can be used to cancel decoherence in an arbitrary quantum system coupled to a Markovian reservoir that is being monitored. Since no-knowledge feedback does not depend on the system state or Hamiltonian, such decoherence cancellation is guaranteed to be general and robust, and can operate in conjunction with any other quantum control protocol. As an application, we show that no-knowledge feedback could be used to improve the performance of dissipative quantum computers subjected to local loss.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...