Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Bioessays ; 45(4): e2200186, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871153

RESUMO

Unraveling molecular and functional heterogeneity of niche cells within the developing endoderm could resolve mechanisms of tissue formation and maturation. Here, we discuss current unknowns in molecular mechanisms underlying key developmental events in pancreatic islet and intestinal epithelial formation. Recent breakthroughs in single-cell and spatial transcriptomics, paralleled with functional studies in vitro, reveal that specialized mesenchymal subtypes drive the formation and maturation of pancreatic endocrine cells and islets via local interactions with epithelium, neurons, and microvessels. Analogous to this, distinct intestinal niche cells regulate both epithelial development and homeostasis throughout life. We propose how this knowledge can be used to progress research in the human context using pluripotent stem cell-derived multilineage organoids. Overall, understanding the interactions between the multitude of microenvironmental cells and how they drive tissue development and function could help us make more therapeutically relevant in vitro models.


Assuntos
Endoderma , Pâncreas , Humanos , Diferenciação Celular/fisiologia , Homeostase , Intestinos
3.
iScience ; 25(7): 104594, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35756892

RESUMO

Recent studies showed that SARS-CoV-2 can infect adult human pancreas and trigger pancreatic damage. Here, using human fetal pancreas samples and 3D differentiation of human pluripotent cells into pancreatic endocrine cells, we determined that SARS-CoV-2 receptors ACE2, TMPRSS2, and NRP1 are expressed in precursors of insulin-producing pancreatic ß-cells, rendering them permissive to SARS-CoV-2 infection. We also show that SARS-CoV-2 enters and undergoes efficient replication in human multipotent pancreatic and endocrine progenitors in vitro. Moreover, we investigated mechanisms by which SARS-CoV-2 enters pancreatic cells, and found that ACE2 mediates the entry, while NRP1 and TMPRSS2 do not. Surprisingly, we found that in pancreatic progenitors, SARS-CoV-2 enters cells via cathepsin-dependent endocytosis, which is a different route than in respiratory tract. Therefore, pancreatic spheroids might serve as a model to study candidate drugs for endocytosis-mediated viral entry inhibition and to investigate whether SARS-CoV-2 infection may affect pancreas development, possibly causing lifelong health consequences.

4.
Nat Commun ; 13(1): 1952, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414140

RESUMO

In vitro derivation of pancreatic ß-cells from human pluripotent stem cells holds promise as diabetes treatment. Despite recent progress, efforts to generate physiologically competent ß-cells are still hindered by incomplete understanding of the microenvironment's role in ß-cell development and maturation. Here, we analyze the human mesenchymal and endothelial primary cells from weeks 9-20 fetal pancreas and identify a time point-specific microenvironment that permits ß-cell differentiation. Further, we uncover unique factors that guide in vitro development of endocrine progenitors, with WNT5A markedly improving human ß-cell differentiation. WNT5A initially acts through the non-canonical (JNK/c-JUN) WNT signaling and cooperates with Gremlin1 to inhibit the BMP pathway during ß-cell maturation. Interestingly, we also identify the endothelial-derived Endocan as a SST+ cell promoting factor. Overall, our study shows that the pancreatic microenvironment-derived factors can mimic in vivo conditions in an in vitro system to generate bona fide ß-cells for translational applications.


Assuntos
Pâncreas , Via de Sinalização Wnt , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Humanos , MAP Quinase Quinase 4/metabolismo , Pâncreas/metabolismo , Via de Sinalização Wnt/fisiologia , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
5.
Diabetes ; 70(10): 2419-2429, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34344789

RESUMO

Genetic analysis of an adult patient with an unusual course of ketosis-prone diabetes (KPD) and lacking islet autoantibodies demonstrated a nucleotide variant in the 5'-untranslated region (UTR) of PDX1, a ß-cell development gene. When differentiated to the pancreatic lineage, his induced pluripotent stem cells stalled at the definitive endoderm (DE) stage. Metabolomics analysis of the cells revealed that this was associated with leucine hypersensitivity during transition from the DE to the pancreatic progenitor (PP) stage, and RNA sequencing showed that defects in leucine-sensitive mTOR pathways contribute to the differentiation deficiency. CRISPR/Cas9 manipulation of the PDX1 variant demonstrated that it is necessary and sufficient to confer leucine sensitivity and the differentiation block, likely due to disruption of binding of the transcriptional regulator NFY to the PDX1 5'-UTR, leading to decreased PDX1 expression at the early PP stage. Thus, the combination of an underlying defect in leucine catabolism characteristic of KPD with a functionally relevant heterozygous variant in a critical ß-cell gene that confers increased leucine sensitivity and inhibits endocrine cell differentiation resulted in the phenotype of late-onset ß-cell failure in this patient. We define the molecular pathogenesis of a diabetes syndrome and demonstrate the power of multiomics analysis of patient-specific stem cells for clinical discovery.


Assuntos
Diabetes Mellitus Tipo 1/etiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Secretoras de Insulina/fisiologia , Adulto , Diferenciação Celular , Células Cultivadas , Análise Mutacional de DNA , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células Secretoras de Insulina/patologia , Masculino , Pâncreas/citologia , Pâncreas/metabolismo , Pâncreas/patologia , Síndrome , Transativadores/genética , Transativadores/metabolismo
6.
Front Cell Dev Biol ; 9: 629212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996792

RESUMO

A chronic inability to maintain blood glucose homeostasis leads to diabetes, which can damage multiple organs. The pancreatic islets regulate blood glucose levels through the coordinated action of islet cell-secreted hormones, with the insulin released by ß-cells playing a crucial role in this process. Diabetes is caused by insufficient insulin secretion due to ß-cell loss, or a pancreatic dysfunction. The restoration of a functional ß-cell mass might, therefore, offer a cure. To this end, major efforts are underway to generate human ß-cells de novo, in vitro, or in vivo. The efficient generation of functional ß-cells requires a comprehensive knowledge of pancreas development, including the mechanisms driving cell fate decisions or endocrine cell maturation. Rapid progress in single-cell RNA sequencing (scRNA-Seq) technologies has brought a new dimension to pancreas development research. These methods can capture the transcriptomes of thousands of individual cells, including rare cell types, subtypes, and transient states. With such massive datasets, it is possible to infer the developmental trajectories of cell transitions and gene regulatory pathways. Here, we summarize recent advances in our understanding of endocrine pancreas development and function from scRNA-Seq studies on developing and adult pancreas and human endocrine differentiation models. We also discuss recent scRNA-Seq findings for the pathological pancreas in diabetes, and their implications for better treatment.

7.
Mol Neurobiol ; 55(4): 3351-3371, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28497201

RESUMO

Huntington disease (HD) is a dominantly inherited disorder caused by a CAG expansion mutation in the huntingtin (HTT) gene, which results in the HTT protein that contains an expanded polyglutamine tract. The adult form of HD exhibits a late onset of the fully symptomatic phase. However, there is also a long presymptomatic phase, which has been increasingly investigated and recognized as important for the disease development. Moreover, the juvenile form of HD, evoked by a higher number of CAG repeats, resembles a neurodevelopmental disorder and has recently been the focus of additional interest. Multiple lines of data, such as the developmental necessity of HTT, its role in the cell cycle and neurogenesis, and findings from pluripotent stem cells, suggest the existence of a neurodevelopmental component in HD pathogenesis. Therefore, we discuss the early molecular pathogenesis of HD in pluripotent and neural stem cells, with respect to the neurodevelopmental aspects of HD.


Assuntos
Doença de Huntington/patologia , Células-Tronco Neurais/patologia , Transtornos do Neurodesenvolvimento/patologia , Animais , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Transtornos do Neurodesenvolvimento/genética , Expansão das Repetições de Trinucleotídeos/genética
8.
Front Cell Neurosci ; 12: 528, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30713489

RESUMO

In Huntington disease (HD) subtle symptoms in patients may occur years or even decades prior to diagnosis. HD changes at a molecular level may begin as early as in cells that are non-lineage committed such as stem cells or HD patients induced pluripotent stem cells (iPSCs) offering opportunity to enhance the understanding of the HD pathogenesis. In addition, juvenile HD non-linage committed cells were previously not directly investigated in detail by RNA-seq. In the present manuscript, we define the early HD and juvenile HD transcriptional alterations using 6 human HD iPS cell lines from two patients, one with 71 CAGs and one with 109 CAG repeats. We identified 107 (6 HD lines), 198 (3 HD71Q lines) and 217 (3 HD109Q lines) significantly dysregulated mRNAs in each comparison group. The analyses showed that many of dysregulated transcripts in HD109Q iPSC lines are involved in DNA damage response and apoptosis, such as CCND1, CDKN1A, TP53, BAX, TNFRSF10B, TNFRSF10C, TNFRSF10D, DDB2, PLCB1, PRKCQ, HSH2D, ZMAT3, PLK2, and RPS27L. Most of them were identified as downregulated and their proteins are direct interactors with TP53. HTT probably alters the level of several TP53 interactors influencing apoptosis. This may lead to accumulation of an excessive number of progenitor cells and potential disruption of cell differentiation and production of mature neurons. In addition, HTT effects on cell polarization also demonstrated in the analysis may result in a generation of incorrect progenitors. Bioinformatics analysis of transcripts dysregulated in HD71Q iPSC lines showed that several of them act as transcription regulators during the early multicellular stages of development, such as ZFP57, PIWIL2, HIST1H3C, and HIST1H2BB. Significant upregulation of most of these transcripts may lead to a global increase in expression level of genes involved in pathways critical for embryogenesis and early neural development. In addition, MS analysis revealed altered levels of TP53 and ZFP30 proteins reflecting the functional significance of dysregulated mRNA levels of these proteins which were associated with apoptosis and DNA binding. Our finding very well corresponds to the fact that mutation in the HTT gene may cause precocious neurogenesis and identifies pathways likely disrupted during development.

10.
Front Mol Neurosci ; 10: 253, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848389

RESUMO

Huntington disease (HD) is an incurable neurodegenerative disorder caused by expansion of CAG repeats in huntingtin (HTT) gene, resulting in expanded polyglutamine tract in HTT protein. Although, HD has its common onset in adulthood, subtle symptoms in patients may occur decades before diagnosis, and molecular and cellular changes begin much earlier, even in cells that are not yet lineage committed such as stem cells. Studies in induced pluripotent stem cell (iPSC) HD models have demonstrated that multiple molecular processes are altered by the mutant HTT protein and suggested its silencing as a promising therapeutic strategy. Therefore, we aimed to generate HD iPS cells with stable silencing of HTT and further to investigate the effects of HTT knock-down on deregulations of signaling pathways e.g., p53 downregulation, present in cells already in pluripotent state. We designed a gene silencing strategy based on RNAi cassette in piggyBAC vector for constant shRNA expression. Using such system we delivered and tested several shRNA targeting huntingtin in mouse HD YAC128 iPSC and human HD109, HD71, and Control iPSC. The most effective shRNA (shHTT2) reagent stably silenced HTT in all HD iPS cells and remained active upon differentiation to neural stem cells (NSC). When investigating the effects of HTT silencing on signaling pathways, we found that in mouse HD iPSC lines expressing shRNA the level of mutant HTT inversely correlated with p53 levels, resulting in p53 level normalization upon silencing of mutant HTT. We also found that p53 deregulation continues into the NSC developmental stage and it was reversed upon HTT silencing. In addition, we observed subtle effects of silencing on proteins of Wnt/ß-catenin and ERK1/2 signaling pathways. In summary, we successfully created the first mouse and human shRNA-expressing HD iPS cells with stable and continuous HTT silencing. Moreover, we demonstrated reversal of HD p53 phenotype in mouse HD iPSC, therefore, the stable knockdown of HTT is well-suited for investigation on HD cellular pathways, and is potentially useful as a stand-alone therapy or component of cell therapy. In addition, the total HTT knock-down in our human cells has further implications for mutant allele selective approach in iPSC.

11.
Mol Brain ; 8(1): 69, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26515641

RESUMO

BACKGROUND: The polyglutamine (polyQ) family of disorders comprises 9 genetic diseases, including several types of ataxia and Huntington disease. Approximately two decades of investigation and the creation of more than 130 mouse models of polyQ disorders have revealed many similarities between these diseases. The disorders share common mutation types, neurological characteristics and certain aspects of pathogenesis, including morphological and physiological neuronal alterations. All of the diseases still remain incurable. DESCRIPTION: The large volume of information collected as a result of the investigation of polyQ models currently represents a great potential for searching, comparing and translating pathogenesis and therapeutic information between diseases. Therefore, we generated a public database comprising the polyQ mouse models, phenotypes and therapeutic interventions tested in vivo. The database is available at http://conyza.man.poznan.pl/ . CONCLUSION: The use of the database in the field of polyQ diseases may accelerate research on these and other neurodegenerative diseases and provide new perspectives for future investigation.


Assuntos
Bases de Dados de Proteínas , Internet , Doenças Neurodegenerativas/patologia , Peptídeos/metabolismo , Pesquisa , Animais , Modelos Animais de Doenças , Camundongos , Fenótipo , Ferramenta de Busca , Interface Usuário-Computador
12.
Dis Model Mech ; 8(9): 1047-57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26092128

RESUMO

Huntington disease (HD) is a brain disorder characterized by the late onset of motor and cognitive symptoms, even though the neurons in the brain begin to suffer dysfunction and degeneration long before symptoms appear. There is currently no cure. Several molecular and developmental effects of HD have been identified using neural stem cells (NSCs) and differentiated cells, such as neurons and astrocytes. Still, little is known regarding the molecular pathogenesis of HD in pluripotent cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Therefore, we examined putative signaling pathways and processes involved in HD pathogenesis in pluripotent cells. We tested naïve mouse HD YAC128 iPSCs and two types of human HD iPSC that were generated from HD and juvenile-HD patients. Surprisingly, we found that a number of changes affecting cellular processes in HD were also present in undifferentiated pluripotent HD iPSCs, including the dysregulation of the MAPK and Wnt signaling pathways and the dysregulation of the expression of genes related to oxidative stress, such as Sod1. Interestingly, a common protein interactor of the huntingtin protein and the proteins in the above pathways is p53, and the expression of p53 was dysregulated in HD YAC128 iPSCs and human HD iPSCs. In summary, our findings demonstrate that multiple molecular pathways that are characteristically dysregulated in HD are already altered in undifferentiated pluripotent cells and that the pathogenesis of HD might begin during the early stages of life.


Assuntos
Doença de Huntington/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Estresse Oxidativo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Animais , Sequência de Bases , Diferenciação Celular , Criança , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Ativação Enzimática , Humanos , Proteína Huntingtina , Sistema de Sinalização das MAP Quinases , Camundongos , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fosforilação , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Proteínas Wnt/metabolismo , Adulto Jovem , beta Catenina/metabolismo
13.
Neurobiol Dis ; 73: 174-88, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25301414

RESUMO

Spinocerebellar ataxia type 3 (SCA3/MJD) is a neurodegenerative disease triggered by the expansion of CAG repeats in the ATXN3 gene. Here, we report the generation of the first humanized ataxin-3 knock-in mouse model (Ki91), which provides insights into the neuronal and glial pathology of SCA3/MJD. First, mutant ataxin-3 accumulated in cell nuclei across the Ki91 brain, showing diffused immunostaining and forming intranuclear inclusions. The humanized allele revealed expansion and contraction of CAG repeats in intergenerational transmissions. CAG mutation also exhibited age-dependent tissue-specific expansion, which was most prominent in the cerebellum, pons and testes of Ki91 animals. Moreover, Ki91 mice displayed neuroinflammatory processes, showing astrogliosis in the cerebellar white matter and the substantia nigra that paralleled the transcriptional deregulation of Serpina3n, a molecular sign of neurodegeneration and brain damage. Simultaneously, the cerebellar Purkinje cells in Ki91 mice showed neurodegeneration, a pronounced decrease in Calbindin D-28k immunoreactivity and a mild decrease in cell number, thereby modeling the degeneration of the cerebellum observed in SCA3. Moreover, these molecular and cellular neuropathologies were accompanied by late behavioral deficits in motor coordination observed in rotarod and static rod tests in heterozygous Ki91 animals. In summary, we created an ataxin-3 knock-in mouse model that combines the molecular and behavioral disease phenotypes with the genetic features of SCA3. This model will be very useful for studying the pathogenesis and responses to therapy of SCA3/MJD and other polyQ disorders.


Assuntos
Encéfalo/patologia , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Proteínas do Tecido Nervoso/genética , Neuroglia/patologia , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Animais , Ataxina-3 , Calbindina 1/metabolismo , Modelos Animais de Doenças , Encefalite/etiologia , Feminino , Regulação da Expressão Gênica/genética , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Corpos de Inclusão Intranuclear/patologia , Doença de Machado-Joseph/complicações , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transtornos de Sensação/etiologia , Repetições de Trinucleotídeos/genética
14.
Mol Neurobiol ; 46(2): 430-66, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22944909

RESUMO

Mouse models of human diseases are created both to understand the pathogenesis of the disorders and to find successful therapies for them. This work is the second part in a series of reviews of mouse models of polyglutamine (polyQ) hereditary disorders and focuses on in vivo experimental therapeutic approaches. Like part I of the polyQ mouse model review, this work is supplemented with a table that contains data from experimental studies of therapeutic approaches in polyQ mouse models. The aim of this review was to characterize the benefits and outcomes of various therapeutic strategies in mouse models. We examine whether the therapeutic strategies are specific to a single disease or are applicable to more than one polyQ disorder in mouse models. In addition, we discuss the suitability of mouse models in therapeutic approaches. Although the majority of therapeutic studies were performed in mouse models of Huntington disease, similar strategies were also used in other disease models.


Assuntos
Bases de Dados como Assunto , Modelos Animais de Doenças , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Peptídeos/metabolismo , Animais , Humanos , Camundongos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/metabolismo , Fenótipo
15.
Mol Neurobiol ; 46(2): 393-429, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22956270

RESUMO

Polyglutamine (polyQ) disorders share many similarities, such as a common mutation type in unrelated human causative genes, neurological character, and certain aspects of pathogenesis, including morphological and physiological neuronal alterations. The similarities in pathogenesis have been confirmed by findings that some experimental in vivo therapy approaches are effective in multiple models of polyQ disorders. Additionally, mouse models of polyQ diseases are often highly similar between diseases with respect to behavior and the features of the disease. The common features shared by polyQ mouse models may facilitate the investigation of polyQ disorders and may help researchers explore the mechanisms of these diseases in a broader context. To provide this context and to promote the understanding of polyQ disorders, we have collected and analyzed research data about the characterization and treatment of mouse models of polyQ diseases and organized them into two complementary Excel data tables. The data table that is presented in this review (Part I) covers the behavioral, molecular, cellular, and anatomic characteristics of polyQ mice and contains the most current knowledge about polyQ mouse models. The structure of this data table is designed in such a way that it can be filtered to allow for the immediate retrieval of the data corresponding to a single mouse model or to compare the shared and unique aspects of many polyQ models. The second data table, which is presented in another publication (Part II), covers therapeutic research in mouse models by summarizing all of the therapeutic strategies employed in the treatment of polyQ disorders, phenotypes that are used to examine the effects of the therapy, and therapeutic outcomes.


Assuntos
Bases de Dados como Assunto , Modelos Animais de Doenças , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Peptídeos/metabolismo , Animais , Progressão da Doença , Camundongos , Camundongos Transgênicos
16.
Nucleic Acids Res ; 39(1): 257-68, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20739353

RESUMO

The biogenesis of human microRNAs (miRNAs) includes two RNA cleavage steps in which the activities of the RNases Drosha and Dicer are involved. miRNAs of diverse lengths are generated from different genes, and miRNAs that are heterogeneous in length are produced from a single miRNA gene. We determined the solution structures of many miRNA precursors and analysed the structural basis of miRNA length diversity using a new measure: the weighted average length of diced RNA (WALDI). We found that asymmetrical structural motifs present in precursor hairpins are primarily responsible for the length diversity of miRNAs generated by Dicer. High-resolution northern blots of miRNAs and their precursors revealed that both Dicer and Drosha cleavages of imperfect specificity contributed to the miRNA length heterogeneity. The relevance of these findings to the dynamics of the dicing complex, mRNA regulation by miRNA, RNA interference and miRNA technologies are discussed.


Assuntos
MicroRNAs/química , MicroRNAs/metabolismo , Precursores de RNA/química , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Sequência de Bases , Linhagem Celular , Humanos , Dados de Sequência Molecular , Mutagênese , Ribonuclease III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...