Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(11): 113393, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37934665

RESUMO

TmaR, the only known pole-localizer protein in Escherichia coli, was shown to cluster at the cell poles and control localization and activity of the major sugar regulator in a tyrosine phosphorylation-dependent manner. Here, we show that TmaR assembles by phase separation (PS) via heterotypic interactions with RNA in vivo and in vitro. An unbiased automated mutant screen combined with directed mutagenesis and genetic manipulations uncovered the importance of a predicted nucleic-acid-binding domain, a disordered region, and charged patches, one containing the phosphorylated tyrosine, for TmaR condensation. We demonstrate that, by protecting flagella-related transcripts, TmaR controls flagella production and, thus, cell motility and biofilm formation. These results connect PS in bacteria to survival and provide an explanation for the linkage between metabolism and motility. Intriguingly, a point mutation or increase in its cellular concentration induces irreversible liquid-to-solid transition of TmaR, similar to human disease-causing proteins, which affects cell morphology and division.


Assuntos
Bactérias , Condensados Biomoleculares , Humanos , Proteínas , Flagelos/fisiologia , Escherichia coli/genética , Tirosina
2.
Cell Rep ; 41(13): 111881, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36577380

RESUMO

Hfq, an Sm-like protein and the major RNA chaperone in E. coli, has been shown to distribute non-uniformly along a helical path under normal growth conditions and to relocate to the cell poles under certain stress conditions. We have previously shown that Hfq relocation to the poles is accompanied by polar accumulation of most small RNAs (sRNAs). Here, we show that Hfq undergoes RNA-dependent phase separation to form cytoplasmic or polar condensates of different density under normal and stress conditions, respectively. Purified Hfq forms droplets in the presence of crowding agents or RNA, indicating that its condensation is via heterotypic interactions. Stress-induced relocation of Hfq condensates and sRNAs to the poles depends on the pole-localizer TmaR. Phase separation of Hfq correlates with its ability to perform its posttranscriptional roles as sRNA-stabilizer and sRNA-mRNA matchmaker. Our study offers a spatiotemporal mechanism for sRNA-mediated regulation in response to environmental changes.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Fator Proteico 1 do Hospedeiro , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
3.
FEBS Lett ; 595(22): 2805-2815, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644400

RESUMO

The mechanisms controlling membrane recognition by proteins with one hydrophobic stretch at their carboxyl terminus (tail anchor, TA) are poorly defined. The Escherichia coli TAs of ElaB and YqjD, which share sequential and structural similarity with the Saccharomyces cerevisiae TA of Fis1, were shown to localize to mitochondria. We show that YqjD and ElaB are directed by their TAs to bacterial cell poles. Fis1(TA) expressed in E. coli localizes like the endogenous TAs. The yeast and bacterial TAs are inserted in the E. coli inner membrane, and they all show affiliation to phosphatidic acid (PA), found in the membrane of the bacterial cell poles and of the yeast mitochondria. Our results suggest a mechanism for TA membrane recognition conserved from bacteria to mitochondria and raise the possibility that through their interaction with PA, and TAs play a role across prokaryotes and eukaryotes in controlling cell/organelle fate.


Assuntos
Sequência Conservada , Proteínas de Escherichia coli/genética , Evolução Molecular , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Domínios Proteicos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33376208

RESUMO

The poles of Escherichia coli cells are emerging as hubs for major sensory systems, but the polar determinants that allocate their components to the pole are largely unknown. Here, we describe the discovery of a previously unannotated protein, TmaR, which localizes to the E. coli cell pole when phosphorylated on a tyrosine residue. TmaR is shown here to control the subcellular localization and activity of the general PTS protein Enzyme I (EI) by binding and polar sequestration of EI, thus regulating sugar uptake and metabolism. Depletion or overexpression of TmaR results in EI release from the pole or enhanced recruitment to the pole, which leads to increasing or decreasing the rate of sugar consumption, respectively. Notably, phosphorylation of TmaR is required to release EI and enable its activity. Like TmaR, the ability of EI to be recruited to the pole depends on phosphorylation of one of its tyrosines. In addition to hyperactivity in sugar consumption, the absence of TmaR also leads to detrimental effects on the ability of cells to survive in mild acidic conditions. Our results suggest that this survival defect, which is sugar- and EI-dependent, reflects the difficulty of cells lacking TmaR to enter stationary phase. Our study identifies TmaR as the first, to our knowledge, E. coli protein reported to localize in a tyrosine-dependent manner and to control the activity of other proteins by their polar sequestration and release.


Assuntos
Polaridade Celular/fisiologia , Escherichia coli/metabolismo , Transporte Proteico/fisiologia , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas de Escherichia coli/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosforilação , Açúcares/metabolismo , Tirosina/metabolismo
5.
Front Microbiol ; 8: 2695, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29387047

RESUMO

Although the list of proteins that localize to the bacterial cell poles is constantly growing, little is known about their temporal behavior. EI, a major protein of the phosphotransferase system (PTS) that regulates sugar uptake and metabolism in bacteria, was shown to form clusters at the Escherichia coli cell poles. We monitored the localization of EI clusters, as well as diffuse molecules, in space and time during the lifetime of E. coli cells. We show that EI distribution and cluster dynamics varies among cells in a population, and that the cluster speed inversely correlates with cluster size. In growing cells, EI is not assembled into clusters in almost 40% of the cells, and the clusters in most remaining cells dynamically relocate within the pole region or between the poles. In non-growing cells, the fraction of cells that contain EI clusters is significantly higher, and dispersal of these clusters is often observed shortly after exiting quiescence. Later, during growth, EI clusters stochastically re-form by assembly of pre-existing dispersed molecules at random time points. Using a fluorescent glucose analog, we found that EI function inversely correlates with clustering and with cluster size. Thus, activity is exerted by dispersed EI molecules, whereas the polar clusters serve as a reservoir of molecules ready to act when needed. Taken together our findings highlight the spatiotemporal distribution of EI as a novel layer of regulation that contributes to the population phenotypic heterogeneity with regard to sugar metabolism, seemingly conferring a survival benefit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...