Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 376(6590): eabf7052, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35420958

RESUMO

Experience-dependent changes in behavior are mediated by long-term functional modifications in brain circuits. Activity-dependent plasticity of synaptic input is a major underlying cellular process. Although we have a detailed understanding of synaptic and dendritic plasticity in vitro, little is known about the functional and plastic properties of active dendrites in behaving animals. Using deep brain two-photon Ca2+ imaging, we investigated how sensory responses in amygdala principal neurons develop upon classical fear conditioning, a form of associative learning. Fear conditioning induced differential plasticity in dendrites and somas regulated by compartment-specific inhibition. Our results indicate that learning-induced plasticity can be uncoupled between soma and dendrites, reflecting distinct synaptic and microcircuit-level mechanisms that increase the computational capacity of amygdala circuits.


Assuntos
Tonsila do Cerebelo , Condicionamento Clássico , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Clássico/fisiologia , Medo/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia
2.
Science ; 366(6469)2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31780530

RESUMO

Adverse events need to be quickly evaluated and memorized, yet how these processes are coordinated is poorly understood. We discovered a large population of excitatory neurons in mouse median raphe region (MRR) expressing vesicular glutamate transporter 2 (vGluT2) that received inputs from several negative experience-related brain centers, projected to the main aversion centers, and activated the septohippocampal system pivotal for learning of adverse events. These neurons were selectively activated by aversive but not rewarding stimuli. Their stimulation induced place aversion, aggression, depression-related anhedonia, and suppression of reward-seeking behavior and memory acquisition-promoting hippocampal theta oscillations. By contrast, their suppression impaired both contextual and cued fear memory formation. These results suggest that MRR vGluT2 neurons are crucial for the acquisition of negative experiences and may play a central role in depression-related mood disorders.


Assuntos
Agressão/fisiologia , Anedonia/fisiologia , Aprendizagem da Esquiva/fisiologia , Núcleo Dorsal da Rafe/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Animais , Depressão/fisiopatologia , Núcleo Dorsal da Rafe/metabolismo , Potenciais Evocados/fisiologia , Habenula/fisiologia , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Optogenética , Ritmo Teta , Proteína Vesicular 2 de Transporte de Glutamato/genética
4.
Science ; 364(6442)2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31123108

RESUMO

Hippocampal pyramidal cells encode memory engrams, which guide adaptive behavior. Selection of engram-forming cells is regulated by somatostatin-positive dendrite-targeting interneurons, which inhibit pyramidal cells that are not required for memory formation. Here, we found that γ-aminobutyric acid (GABA)-releasing neurons of the mouse nucleus incertus (NI) selectively inhibit somatostatin-positive interneurons in the hippocampus, both monosynaptically and indirectly through the inhibition of their subcortical excitatory inputs. We demonstrated that NI GABAergic neurons receive monosynaptic inputs from brain areas processing important environmental information, and their hippocampal projections are strongly activated by salient environmental inputs in vivo. Optogenetic manipulations of NI GABAergic neurons can shift hippocampal network state and bidirectionally modify the strength of contextual fear memory formation. Our results indicate that brainstem NI GABAergic cells are essential for controlling contextual memories.


Assuntos
Aprendizagem por Associação/fisiologia , Neurônios GABAérgicos/fisiologia , Núcleos da Rafe/fisiologia , Animais , Feminino , Interneurônios/química , Interneurônios/fisiologia , Masculino , Testes de Memória e Aprendizagem , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Células Piramidais/química , Células Piramidais/fisiologia , Somatostatina/análise , Somatostatina/fisiologia , Ritmo Teta
5.
Nat Commun ; 9(1): 2848, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030438

RESUMO

The basal forebrain cholinergic system is widely assumed to control cortical functions via non-synaptic transmission of a single neurotransmitter. Yet, we find that mouse hippocampal cholinergic terminals invariably establish GABAergic synapses, and their cholinergic vesicles dock at those synapses only. We demonstrate that these synapses do not co-release but co-transmit GABA and acetylcholine via different vesicles, whose release is triggered by distinct calcium channels. This co-transmission evokes composite postsynaptic potentials, which are mutually cross-regulated by presynaptic autoreceptors. Although postsynaptic cholinergic receptor distribution cannot be investigated, their response latencies suggest a focal, intra- and/or peri-synaptic localisation, while GABAA receptors are detected intra-synaptically. The GABAergic component alone effectively suppresses hippocampal sharp wave-ripples and epileptiform activity. Therefore, the differentially regulated GABAergic and cholinergic co-transmission suggests a hitherto unrecognised level of control over cortical states. This novel model of hippocampal cholinergic neurotransmission may lead to alternative pharmacotherapies after cholinergic deinnervation seen in neurodegenerative disorders.


Assuntos
Acetilcolina/fisiologia , Hipocampo/fisiologia , Receptores de GABA-A/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Cálcio/fisiologia , Dendritos/fisiologia , Feminino , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/fisiopatologia , Neurotransmissores/fisiologia , Perfusão , Sinapses/fisiologia , Potenciais Sinápticos , Transmissão Sináptica , Vesículas Sinápticas/fisiologia
6.
Brain Struct Funct ; 222(1): 287-299, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27044051

RESUMO

The median raphe region (MRR, which consist of MR and paramedian raphe regions) plays a crucial role in regulating cortical as well as subcortical network activity and behavior, while its malfunctioning may lead to disorders, such as schizophrenia, major depression, or anxiety. Mouse MRR neurons are classically identified on the basis of their serotonin (5-HT), vesicular glutamate transporter type 3 (VGLUT3), and gamma-aminobutyric acid (GABA) contents; however, the exact cellular composition of MRR regarding transmitter phenotypes is still unknown. Using an unbiased stereological method, we found that in the MR, 8.5 % of the neurons were 5-HT, 26 % were VGLUT3, and 12.8 % were 5-HT and VGLUT3 positive; whereas 37.2 % of the neurons were GABAergic, and 14.4 % were triple negative. In the whole MRR, 2.1 % of the neurons were 5-HT, 7 % were VGLUT3, and 3.6 % were 5-HT and VGLUT3 positive; whereas 61 % of the neurons were GABAergic. Surprisingly, 25.4 % of the neurons were triple negative and were only positive for the neuronal marker NeuN. PET-1/ePET-Cre transgenic mouse lines are widely used to specifically manipulate only 5-HT containing neurons. Interestingly, however, using the ePET-Cre transgenic mice, we found that far more VGLUT3 positive cells expressed ePET than 5-HT positive cells, and about 38 % of the ePET cells contained only VGLUT3, while more than 30 % of 5-HT cells were ePET negative. These data should facilitate the reinterpretation of PET-1/ePET related data in the literature and the identification of the functional role of a putatively new type of triple-negative neuron in the MRR.


Assuntos
Núcleo Dorsal da Rafe/fisiologia , Neurônios/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Contagem de Células , Núcleo Dorsal da Rafe/química , Núcleo Dorsal da Rafe/citologia , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , Neurônios Serotoninérgicos/citologia , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/fisiologia , Serotonina/metabolismo , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo
7.
Brain Struct Funct ; 221(2): 735-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25381463

RESUMO

The median raphe region (MRR) is thought to be serotonergic and plays an important role in the regulation of many cognitive functions. In the hippocampus (HIPP), the MRR exerts a fast excitatory control, partially through glutamatergic transmission, on a subpopulation of GABAergic interneurons that are key regulators of local network activity. However, not all receptors of this connection in the HIPP and in synapses established by MRR in other brain areas are known. Using combined anterograde tracing and immunogold methods, we show that the GluN2A subunit of the NMDA receptor is present in the synapses established by MRR not only in the HIPP, but also in the medial septum (MS) and in the medial prefrontal cortex (mPFC) of the mouse. We estimated similar amounts of NMDA receptors in these synapses established by the MRR and in local adjacent excitatory synapses. Using retrograde tracing and confocal laser scanning microscopy, we found that the majority of the projecting cells of the mouse MRR contain the vesicular glutamate transporter type 3 (vGluT3). Furthermore, using double retrograde tracing, we found that single cells of the MRR can innervate the HIPP and mPFC or the MS and mPFC simultaneously, and these double-projecting cells are also predominantly vGluT3-positive. Our results indicate that the majority of the output of the MRR is glutamatergic and acts through NMDA receptor-containing synapses. This suggests that key forebrain areas receive precisely targeted excitatory input from the MRR, which is able to synchronously modify activity in those regions via individual MRR cells with dual projections.


Assuntos
Glutamatos/metabolismo , Neurônios/metabolismo , Prosencéfalo/metabolismo , Núcleos da Rafe/metabolismo , Animais , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Neurônios/citologia , Córtex Pré-Frontal/metabolismo , Prosencéfalo/citologia , Núcleos da Rafe/citologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
8.
Brain Struct Funct ; 220(2): 919-40, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24407853

RESUMO

Three functionally different populations of perisomatic interneurons establish GABAergic synapses on hippocampal pyramidal cells: parvalbumin (PV)-containing basket cells, type 1 cannabinoid receptor (CB1)-positive basket cells both of which target somata, and PV-positive axo-axonic cells that innervate axon initial segments. Using electron microscopic reconstructions, we estimated that a pyramidal cell body receives synapses from about 60 and 140 synaptic terminals in the CA1 and CA3 area, respectively. About 60 % of these terminals were PV positive, whereas 35-40 % of them were CB1 positive. Only about 1 % (CA1) and 4 % (CA3) of the somatic boutons were negative for both markers. Using fluorescent labeling, we showed that most of the CB1-positive terminals expressed vesicular glutamate transporter 3. Reconstruction of somatic boutons revealed that although their volumes are similar, CB1-positive boutons are more flat and the total volume of their mitochondria was smaller than that of PV-positive boutons. Both types of boutons contain dense-core vesicles and frequently formed multiple release sites on their targets and innervated an additional soma or dendrite as well. PV-positive boutons possessed small, macular synapses; whereas the total synaptic area of CB1-positive boutons was larger and formed multiple irregular-shaped synapses. Axo-axonic boutons were smaller than somatic boutons, had only one synapse and their ultrastructural parameters were closer to those of PV-positive somatic boutons. Our results represent the first quantitative measurement-using a highly reliable method-of the contribution of different cell types to the perisomatic innervation of pyramidal neurons, and may help to explain functional differences in their output properties.


Assuntos
Hipocampo/ultraestrutura , Interneurônios/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Células Piramidais/ultraestrutura , Sistemas de Transporte de Aminoácidos Acídicos , Animais , Hipocampo/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/ultraestrutura , Parvalbuminas/análise , Terminações Pré-Sinápticas/metabolismo , Células Piramidais/metabolismo , Receptor CB1 de Canabinoide/análise
9.
PLoS One ; 7(5): e37753, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662211

RESUMO

GABA (gamma-aminobutyric-acid), the main inhibitory neurotransmitter in the adult brain, exerts depolarizing (excitatory) actions during development and this GABAergic depolarization cooperates with NMDARs (N-methyl-D-aspartate receptors) to drive spontaneous synchronous activity (SSA) that is fundamentally important for developing neuronal networks. Although GABAergic depolarization is known to assist in the activation of NMDARs during development, the subcellular localization of NMDARs relative to GABAergic synapses is still unknown. Here, we investigated the subcellular distribution of NMDARs in association with GABAergic synapses at the developmental stage when SSA is most prominent in mice. Using multiple immunofluorescent labeling and confocal laser-scanning microscopy in the developing mouse hippocampus, we found that NMDARs were associated with both glutamatergic and GABAergic synapses at postnatal day 6-7 and we observed a direct colocalization of GABA(A)- and NMDA-receptor labeling in GABAergic synapses. Electron microscopy of pre-embedding immunogold-immunoperoxidase reactions confirmed that GluN1, GluN2A and GluN2B NMDAR subunits were all expressed in glutamatergic and GABAergic synapses postsynaptically. Finally, quantitative post-embedding immunogold labeling revealed that the density of NMDARs was 3 times higher in glutamatergic than in GABAergic synapses. Since GABAergic synapses were larger, there was little difference in the total number of NMDA receptors in the two types of synapses. In addition, receptor density in synapses was substantially higher than extrasynaptically. These data can provide the neuroanatomical basis of a new interpretation of previous physiological data regarding the GABA(A)R-NMDAR cooperation during early development. We suggest that during SSA, synaptic GABA(A)R-mediated depolarization assists NMDAR activation right inside GABAergic synapses and this effective spatial cooperation of receptors and local change of membrane potential will reach developing glutamatergic synapses with a higher probability and efficiency even further away on the dendrites. This additional level of cooperation that operates within the depolarizing GABAergic synapse, may also allow its own modification triggered by Ca(2+)-influx through the NMDA receptors.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipocampo/crescimento & desenvolvimento , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Neurônios GABAérgicos/ultraestrutura , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sinapses/ultraestrutura
10.
J Neurosci ; 31(16): 5893-904, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21508214

RESUMO

GABAergic inhibition plays a central role in the control of pyramidal cell ensemble activities; thus, any signaling mechanism that regulates inhibition is able to fine-tune network patterns. Here, we provide evidence that the retrograde nitric oxide (NO)-cGMP cascade triggered by NMDA receptor (NMDAR) activation plays a role in the control of hippocampal GABAergic transmission in mice. GABAergic synapses express neuronal nitric oxide synthase (nNOS) postsynaptically and NO receptors (NO-sensitive guanylyl cyclase) in the presynaptic terminals. We hypothesized that--similar to glutamatergic synapses--the Ca(2+) transients required to activate nNOS were provided by NMDA receptor activation. Indeed, administration of 5 µm NMDA induced a robust nNOS-dependent cGMP production in GABAergic terminals, selectively in the CA1 and CA3c areas. Furthermore, using preembedding, postembedding, and SDS-digested freeze-fracture replica immunogold labeling, we provided quantitative immunocytochemical evidence that NMDAR subunits GluN1, GluN2A, and GluN2B were present in most somatic GABAergic synapses postsynaptically. These data indicate that NMDARs can modulate hippocampal GABAergic inhibition via NO-cGMP signaling in an activity-dependent manner and that this effect is subregion specific in the mouse hippocampus.


Assuntos
Hipocampo/metabolismo , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/fisiologia , Animais , GMP Cíclico/metabolismo , Eletrofisiologia , Guanilato Ciclase/metabolismo , Imuno-Histoquímica , Camundongos , Inibição Neural/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Transmissão Sináptica/fisiologia
11.
Cereb Cortex ; 21(9): 2065-74, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21282319

RESUMO

Early γ-aminobutyric acid mediated (GABAergic) synaptic transmission and correlated neuronal activity are fundamental to network formation; however, their regulation during early postnatal development is poorly understood. Nitric oxide (NO) is an important retrograde messenger at glutamatergic synapses, and it was recently shown to play an important role also at GABAergic synapses in the adult brain. The subcellular localization and network effect of this signaling pathway during early development are so far unexplored, but its disruption at this early age is known to lead to profound morphological and functional alterations. Here, we provide functional evidence--using whole-cell recording--that NO signaling modulates not only glutamatergic but also GABAergic synaptic transmission in the mouse hippocampus during the early postnatal period. We identified the precise subcellular localization of key elements of the underlying molecular cascade using immunohistochemistry at the light--and electron microscopic levels. As predicted by these morpho-functional data, multineuron calcium imaging in acute slices revealed that this NO-signaling machinery is involved also in the control of synchronous network activity patterns. We suggest that the retrograde NO-signaling system is ideally suited to fulfill a general presynaptic regulatory role and may effectively fine-tune network activity during early postnatal development, while GABAergic transmission is still depolarizing.


Assuntos
Óxido Nítrico/fisiologia , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Cálcio/fisiologia , GMP Cíclico/biossíntese , Fenômenos Eletrofisiológicos , Imunofluorescência , Glutamato Descarboxilase/fisiologia , Ácido Glutâmico/fisiologia , Guanilato Ciclase/fisiologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/fisiologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Guanilil Ciclase Solúvel , Ácido gama-Aminobutírico/fisiologia
12.
J Neural Transm (Vienna) ; 118(6): 865-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21194001

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder, the pathomechanism of which is not yet fully understood. Excitotoxicity is known to be involved in the development of HD and antiglutamatergic agents may, therefore, have beneficial neuroprotective effects. One of these agents is the tryptophan metabolite kynurenic acid (KYNA), which is an endogenous NMDA receptor antagonist. However, its pharmacological properties rule out its systemic administration in CNS disorders. We have tested a novel KYNA analogue, N-(2-N,N-dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride, in the N171-82Q transgenic mouse model of HD. The analogue exhibited several significant effects: it prolonged the survival of the transgenic mice, ameliorated their hypolocomotion, prevented the loss of weight and completely prevented the atrophy of the striatal neurons. The beneficial effects of this KYNA analogue are probably explained by its complex anti-excitotoxic activity. As it did not induce any appreciable side-effect at the protective dose applied in a chronic dosing regime in this mouse model, it appears worthy of further thorough investigations with a view to eventual clinical trials.


Assuntos
Corpo Estriado/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Doença de Huntington/tratamento farmacológico , Ácido Cinurênico/análogos & derivados , Ácido Cinurênico/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Feminino , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Degeneração Neural/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...