Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 14(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790402

RESUMO

Inflammation plays an important role in numerous central nervous system (CNS) disorders. Its role is ambiguous-it can induce detrimental effects, as well as repair and recovery. In response to injury or infection, resident CNS cells secrete numerous factors that alter blood-brain barrier (BBB) function and recruit immune cells into the brain, like neutrophils. Their role in the pathophysiology of CNS diseases, like multiple sclerosis (MS) and stroke, is highly recognized. Neutrophils alter BBB permeability and attract other immune cells into the CNS. Previously, neutrophils were considered a homogenous population. Nowadays, it is known that various subtypes of these cells exist, which reveal proinflammatory or immunosuppressive functions. The primary goal of this review was to discuss the current knowledge regarding the important role of neutrophils in MS and stroke development and progression. As the pathogenesis of these two disorders is completely different, it gives the opportunity to get insight into diverse mechanisms of neutrophil involvement in brain pathology. Our understanding of the role of neutrophils in CNS diseases is still evolving as new aspects of their activity are being unraveled. Neutrophil plasticity adds another level to their functional complexity and their importance for CNS pathophysiology.

2.
Angiology ; : 33197241245734, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38595032

RESUMO

Biomarkers of atherosclerotic plaque instability are needed. This study aimed to evaluate the level of chemokine CXCL1 (CXC motif ligand 1) in plasma and atherosclerotic plaques in patients with carotid stenosis and correlate that with plaque morphology. The study group included 82 patients (30 women and 52 men) aged 50-90 years (mean 68.1 ± 8.9) who underwent elective carotid endarterectomy. The obtained atherosclerotic plaques were macroscopically and microscopically assessed according to the American Heart Association (AHA) classification. Fifty-one (62.2%) and 31 (37.8%) of the plaques were unstable and stable, respectively. The mean concertation of CXCL1 in plaques in asymptomatic and symptomatic patients was 0.00 (±0.00) vs 88.90 (±95.19) pg/ml, respectively (P = 0.000). The mean plasma concentration of CXCL1 in the study group was 42.40 (±85.79) pg/ml, while in the control group (healthy volunteers without lesions in the carotid arteries) it was 0.00 pg/mL (±0.00) (P = 0.000). The mean plasma CXCL1 concertation in asymptomatic and symptomatic patients was 22.08 (±49.13) versus 67.72 (±107.91) pg/ml, respectively (P = 0.031). Significantly higher CXCL1 concentration in atherosclerotic plaques and plasma in symptomatic patients compared with asymptomatic patients probably resulted from unstable lesions in the carotid arteries.

3.
Curr Issues Mol Biol ; 46(3): 2105-2118, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38534751

RESUMO

Astrocytes play an important role in the regulation of the inflammatory response in the CNS, e.g., in demyelinating diseases. Since the chemokine CXCL1 is known to be secreted by astrocytes and to have a pro-inflammatory effect on immune cells in the CNS, we verified the effect of testosterone on its secretion in vitro (in the astrocytic cell line DI TNC1). Testosterone reduced the increase in CXCL1 production caused by the pro-inflammatory agent lysophosphatidylcholine and restored the basal production level of CXCL1. The androgen receptor (present and functional in the studied cell line) was strongly suggested to mediate this effect-its non-steroid ligand flutamide exerted an agonist-like effect, mimicking the activity of testosterone itself on CXCL1 secretion. This novel mechanism has important implications for the known immunomodulatory effect of testosterone and potentially other androgenic hormones. It provides a potential explanation on the molecular level and shows that astrocytes are important players in inflammatory homeostasis in the CNS and its hormonal regulation. Therefore, it suggests new directions for the development of the therapeutic intervention.

4.
Pharmaceutics ; 15(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765263

RESUMO

Astrocytes are considered to be the dominant cell fraction of the central nervous system. They play a supportive and protective role towards neurons, and regulate inflammatory processes; they thus make suitable targets for drugs and supplements, such as polyphenolic compounds. However, due to their wide range, knowledge of their anti-inflammatory potential remains relatively incomplete. The aim of this study was therefore to determine whether myricetin and chrysin are able to decrease chemokine release in reactive astrocytes. To assess the antioxidant and anti-inflammatory potential of polyphenols, human primary astrocytes were cultured in the presence of a reactive and neurotoxic astrocyte-inducing cytokine mixture (TNF-α, IL-1a, C1q), either alone or in the presence of myricetin or chrysin. The examined polyphenols were able to modify the secretion of chemokines by human cortical astrocytes, especially CCL5 (chrysin), CCL1 (myricetin) and CCL2 (both), while cell viability was not affected. Surprisingly, the compounds did not demonstrate any antioxidant properties in the astrocyte cultures.

5.
Nutrients ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571391

RESUMO

It is well known that neurodegenerative diseases' development and progression are accelerated due to oxidative stress and inflammation, which result in impairment of mitochondrial function, cellular damage, and dysfunction of DNA repair systems. The increased consumption of antioxidants can postpone the development of these disorders and improve the quality of patients' lives who have already been diagnosed with neurodegenerative diseases. Prolonging life span in developed countries contributes to an increase in the incidence ratio of chronic age-related neurodegenerative disorders, such as PD (Parkinson's disease), AD (Alzheimer's disease), or numerous forms of age-related dementias. Dietary supplementation with neuroprotective plant-derived polyphenols might be considered an important element of healthy aging. Some polyphenols improve cognition, mood, visual functions, language, and verbal memory functions. Polyphenols bioavailability differs greatly from one compound to another and is determined by solubility, degree of polymerization, conjugation, or glycosylation resulting from chemical structure. It is still unclear which polyphenols are beneficial because their potential depends on efficient transport across the BBB (blood-brain barrier), bioavailability, and stability in the CNS (central nervous system). Polyphenols improve brain functions by having a direct impact on cells and processes in the CNS. For a direct effect, polyphenolic compounds must be able to overcome the BBB and accumulate in brain tissue. In this review, the latest achievements in studies (animal models and clinical trials) on the effect of polyphenols on brain activity and function are described. The beneficial impact of plant polyphenols on the brain may be summarized by their role in increasing brain plasticity and related cognition improvement. As reversible MAO (monoamine oxidase) inhibitors, polyphenols are mood modulators and improve neuronal self-being through an increase in dopamine, serotonin, and noradrenaline amounts in the brain tissue. After analyzing the prohealth effects of various eating patterns, it was postulated that their beneficial effects result from synergistic interactions between individual dietary components. Polyphenols act on the brain endothelial cells and improve the BBB's integrity and reduce inflammation, thus protecting the brain from additional injury during stroke or autoimmune diseases. Polyphenolic compounds are capable of lowering blood pressure and improving cerebral blood flow. Many studies have revealed that a nutritional model based on increased consumption of antioxidants has the potential to ameliorate the cognitive impairment associated with neurodegenerative disorders. Randomized clinical trials have also shown that the improvement of cognitive functions resulting from the consumption of foods rich in flavonoids is independent of age and health conditions. For therapeutic use, sufficient quantities of polyphenols must cross the BBB and reach the brain tissue in active form. An important issue in the direct action of polyphenols on the CNS is not only their penetration through the BBB, but also their brain metabolism and localization. The bioavailability of polyphenols is low. The most usual oral administration also conflicts with bioavailability. The main factors that limit this process and have an effect on therapeutic efficacy are: selective permeability across BBB, gastrointestinal transformations, poor absorption, rapid hepatic and colonic metabolism, and systemic elimination. Thus, phenolic compounds have inadequate bioavailability for human applications to have any beneficial effects. In recent years, new strategies have been attempted in order to exert cognitive benefits and neuroprotective effects. Converting polyphenols into nanostructures is one of the theories proposed to enhance their bioavailability. The following nanoscale delivery systems can be used to encapsulate polyphenols: nanocapsules, nanospheres, micelles, cyclodextrins, solid lipid nanoparticles, and liposomes. It results in great expectations for the wide-scale and effective use of polyphenols in the prevention of neurodegenerative diseases. Thus far, only natural polyphenols have been studied as neuroprotectors. Perhaps some modification of the chemical structure of a given polyphenol may increase its neuroprotective activity and transportation through the BBB. However, numerous questions should be answered before developing neuroprotective medications based on plant polyphenols.


Assuntos
Doenças Neurodegenerativas , Polifenóis , Animais , Humanos , Polifenóis/química , Doenças Neurodegenerativas/tratamento farmacológico , Antioxidantes/farmacologia , Células Endoteliais/metabolismo , Inflamação/tratamento farmacológico
6.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108633

RESUMO

Astrocytes, the most abundant group of glia cells in the brain, provide support for neurons and indicate multiple various functions in the central nervous system (CNS). Growing data additionally describe their role in the regulation of immune system activity. They exert their function not only by direct contact with other cell types, but also through an indirect method, e.g., by secreting various molecules. One such structure is extracellular vesicles, which are important mediators of crosstalk between cells. In our study, we observed that the impact of exosomes derived from astrocytes with various functional phenotype differently affect the immune response of CD4+ T cells, both from healthy individuals and from patients with multiple sclerosis (MS). Astrocytes, by modulating exosome cargo, impacts the release of IFN-γ, IL-17A and CCL2 in our experimental conditions. Considering the proteins concentration in cell culture supernatants and the cellular percentage of Th phenotypes, it could be stated that human astrocytes, by the release of exosomes, are able to modify the activity of human T cells.


Assuntos
Exossomos , Esclerose Múltipla , Humanos , Astrócitos/metabolismo , Exossomos/metabolismo , Esclerose Múltipla/metabolismo , Sistema Nervoso Central , Imunidade
7.
Biomedicines ; 10(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892669

RESUMO

For a long time, astrocytes were considered a passive brain cell population. However, recently, many studies have shown that their role in the central nervous system (CNS) is more active. Previously, it was stated that there are two main functional phenotypes of astrocytes. However, nowadays, it is clear that there is rather a broad spectrum of these phenotypes. The major goal of this study was to evaluate the production of some inflammatory chemokines and neurotrophic factors by primary human astrocytes after pro- or anti-inflammatory stimulation. We observed that only astrocytes induced by inflammatory mediators TNFα/IL-1a/C1q produced CXCL10, CCL1, and CXCL13 chemokines. Unstimulated astrocytes and those cultured with anti-inflammatory cytokines (IL-4, IL-10, or TGF-ß1) did not produce these chemokines. Interestingly, astrocytes cultured in proinflammatory conditions significantly decreased the release of neurotrophic factor PDGF-A, as compared to unstimulated astrocytes. However, in response to anti-inflammatory cytokine TGF-ß1, astrocytes significantly increased PDGF-A production compared to the medium alone. The production of another studied neurotrophic factor BDNF was not influenced by pro- or anti-inflammatory stimulation. The secretory response was accompanied by changes in HLA-DR, CD83, and GFAP expression. Our study confirms that astrocytes differentially respond to pro- and anti-inflammatory stimuli, especially to inflammatory cytokines TNF-α, IL-1a, and C1q, suggesting their role in leukocyte recruitment.

8.
Vaccines (Basel) ; 9(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803752

RESUMO

The only currently available anti-tuberculosis vaccine, Bacillus Calmette-Guérin (BCG), has been reported to also protect against unrelated diseases, including inflammatory diseases such as allergic asthma. Recombinant BCG strains that produce IL-18 have been shown to enhance Th1 responses over non-recombinant BCG and to reduce IL-5 production and bronchoalveolar eosinophilia in mice. However, their ability to decrease the immune polarization of human Th2 cells is not known. Here, we show that BCG and recombinant BCG producing human IL-18 (rBCG-hIL-18) induced the maturation of Der p 1-stimulated monocyte-derived dendritic cells (MD-DCs) from healthy controls and from patients allergic to house dust mites. After incubation with mycobacteria and Der p 1, MD-DCs produced significantly more IL-23 and IP-10 but had no effect on IL-12p70 or IL-10 production compared to Der p 1-pulsed MD-DCs in the absence of mycobacteria. In the presence of Der p 1, BCG- and rBCG-hIL-18-pulsed MD-DCs cocultured with naive, but not with memory T cells from allergic patients, resulted in a decrease in IL-5 production compared to non-pulsed MD-DCs cultured in the presence of Der p 1. BCG, and especially rBCG-hIL-18, may thus be potential therapeutic tools to reduce exacerbated Th2 responses in patients with allergic asthma.

9.
Vaccine ; 36(30): 4566-4577, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29909133

RESUMO

Bacillus Calmette-Guérin (BCG) is the only vaccine available against tuberculosis and the tuberculin skin test (TST) is the most widely used method to detect BCG take. However, subjects may remain TST-negative, even after several BCG administrations. To investigate some of the potential reasons underlying this inability of developing tuberculin sensitivity in response to BCG we compared the effect of different mycobacterial stimuli in the groups differently responding to tuberculin. TST was performed on 71 healthy adults aged 25-30 years, who had received BCG in their childhood, and considered TST-positive at ≥10 mm. Dendritic cells (DCs) were incubated with PPD, live BCG or rBCGhIL-18, producing human IL-18. The latter strain was used to investigate whether the production of IL-18 could overcome some of the immune read-out limitations in the TST-negative subjects. CD86, CD80, CD40, and DC-specific intracellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) expression was analysed by flow cytometry and IL-10, IL-23 and IP-10 secretion in culture supernatants by ELISA. In DCs-T cell co-cultures with naive and memory CD4+ T cells, the IFN-γ and IL-10 levels were determined by ELISA. We found no difference in IL-10 and IFN-γ production by naive T cells between the TST-negative and TST-positive subjects. However, IFN-γ was produced in significantly higher amounts by memory T cells incubated with PPD, BCG or rBCGhIL-18-pulsed DCs in TST-positive than in TST-negative subjects, whereas the numbers of the IFN-γ-producing T cells were similar in both groups. This difference may be partially due to a decreased CD40 and enhanced reduction in DC-SIGN expression by DCs of TST-negative versus TST-positive subjects. A strong effect of IL-18 expression by rBCGhIL-18 on IL-23 production by the DC was seen in both groups, which likely was the reason for the increased IFN-γ production by naïve T cells upon incubation with mycobacteria-pulsed DC, regardless of the TST status.


Assuntos
Teste Tuberculínico/métodos , Adulto , Vacina BCG/imunologia , Linfócitos T CD4-Positivos , Células Dendríticas/imunologia , Feminino , Humanos , Masculino , Monócitos/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto Jovem
10.
J Mol Neurosci ; 63(3-4): 320-332, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29063445

RESUMO

Multiple sclerosis is an autoimmune, neurodegenerative disease, affecting mostly young adults and resulting in progressive disability. It is a multifactorial disorder, with important involvement of both cellular and epigenetic components. Among the epigenetic factors, microRNAs are currently intensively investigated in the context of multiple sclerosis. It has been shown that their biogenesis and function may be regulated by various cytokines. IL-17, a hallmark cytokine of Th17 cells, has been thought to function predominantly as a pro-inflammatory factor, leading to increased disease symptoms. However, there are several studies indicating its protective role during inflammatory process. In this work, we have assessed the impact of high-dose IL-17 administration on microRNAs' expression profile during the preclinical stage of EAE. For selected microRNA, we have performed computational analysis of its potential target mRNAs and cellular pathways. Based on results obtained from in silico analysis, we have chosen genes from neurotrophin signaling pathway for further experiments-BDNF, HRAS, and BCL2. Results obtained in this study suggested that high dose of IL-17 exerts protective activity via miR-155-5p downregulation. Increased expression of all studied genes, especially BCL2, indicated a potential anti-apoptotic function of IL-17 during the preclinical phase of EAE.


Assuntos
Apoptose/efeitos dos fármacos , Encefalomielite Autoimune Experimental/metabolismo , Interleucina-17/farmacologia , Animais , Regulação para Baixo , Feminino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Crescimento Neural/metabolismo , Transdução de Sinais
11.
Int J Mol Sci ; 18(5)2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28481289

RESUMO

The nature of the interaction between Th17 cells and the blood-brain barrier (BBB) is critical for the development of autoimmune inflammation in the central nervous system (CNS). Tumor necrosis factor alpha (TNF-α) or interleukin 17 (IL-17) stimulation is known to enhance the adherence of Th17 cells to the brain endothelium. The brain endothelial cells (bEnd.3) express Vascular cell adhesion molecule 1 (VCAM-1), the receptor responsible for inflammatory cell adhesion, which binds very late antigen 4 (VLA-4) on migrating effector lymphocytes at the early stage of brain inflammation. The present study examines the effect of the pro-inflammatory cytokines TNF-α and IL-17 on the adherence of Th17 cells to bEnd.3. The bEnd.3 cells were found to increase production of CCL2 and CXCL1 after stimulation by pro-inflammatory cytokines, while CCL2, CCL5, CCL20 and IL17 induced Th17 cell migration through a bEnd.3 monolayer. This observation may suggest potential therapeutic targets for the prevention of autoimmune neuroinflammation development in the CNS.


Assuntos
Barreira Hematoencefálica/metabolismo , Adesão Celular , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Células Endoteliais/metabolismo , Interleucina-17/farmacologia , Células Th17/fisiologia , Animais , Barreira Hematoencefálica/citologia , Linhagem Celular , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Feminino , Camundongos , Células Th17/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
12.
Acta Biochim Pol ; 62(4): 913-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26641637

RESUMO

Bacillus Calmette-Guérin (BCG) and pertussis vaccines have been found to be insufficient and their further improvement is required. In order to develop improved vaccines, a better understanding of the main pathways involved in the host's protective immunity to the pathogens is crucial. We address the question as to whether the balance between pro- and anti-inflammatory cytokine production might affect the host responses to BCG and diphtheria-tetanus toxoids-whole cell pertussis (DTwP) vaccines. The study population consisted of 118 healthy people, age range 18-30 years, who had been subjected to BCG and DTwP vaccination according to the state policy. Tuberculin skin testing (TST) revealed a delayed type hypersensitivity (DTH) to PPD (purified protein derivative) in 53% volunteers. The variability in development of the BCG-driven DTH to tuberculin prompted us to address a question as to whether Th1/Th2 polarization is involved in the lack of skin responsiveness to PPD. PPD-stimulated blood lymphocytes from TST(+) participants produced significantly more IFN-γ and less IL-10 than lymphocytes from TST(-) volunteers. However, TST(-) volunteers' sera contained more anti-pertussis IgG but not anti-diphtheria toxin IgG. Mycobacterial antigens and particularly PPD induced a higher expression of HLA-DR and co-stimulatory CD80 receptors on DCs from TST(+) than TST(-) participants. BCG but not PPD pulsed DCs from TST(-) volunteers produced significantly more IL-10. Mycobacterial antigen stimulated DCs from TST(+) volunteers induced a more intense IFN-γ production in co-cultures with autologous lymphocytes than the cells from TST(-) participants. Differences among the types of dendritic cell activities contribute to development of tuberculin reactivity in BCG vaccinated volunteers.


Assuntos
Vacina BCG/imunologia , Citocinas/metabolismo , Vacina contra Difteria, Tétano e Coqueluche/imunologia , Mediadores da Inflamação/metabolismo , Adolescente , Adulto , Antígenos de Bactérias/imunologia , Técnicas de Cocultura , Feminino , Humanos , Hipersensibilidade Tardia , Masculino , Adulto Jovem
13.
J Immunol Res ; 2015: 359153, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26339658

RESUMO

Tuberculosis remains an enormous global burden, despite wide vaccination coverage with the Bacillus Calmette-Guérin (BCG), the only vaccine available against this disease, indicating that BCG-driven immunity is insufficient to protect the human population against tuberculosis. In this study we constructed recombinant BCG producing human IL-18 (rBCGhIL-18) and investigated whether human IL-18 produced by rBCGhIL-18 modulates DC functions and enhances Th1 responses to mycobacterial antigens in humans. We found that the costimulatory CD86 and CD80 molecules were significantly upregulated on rBCGhIL-18-infected DCs, whereas the stimulation of DCs with nonrecombinant BCG was less effective. In contrast, both BCG strains decreased the DC-SIGN expression on human DCs. The rBCGhIL-18 increased IL-23, IL-10, and IP-10 production by DCs to a greater extent than nonrecombinant BCG. In a coculture system of CD4(+) T cells and loaded DCs, rBCGhIL-18 favoured strong IFN-γ but also IL-10 production by naive T cells but not by memory T cells. This was much less the case for nonrecombinant BCG. Thus the expression of IL-18 by recombinant BCG increases IL-23, IP-10, and IL-10 expression by human DCs and enhances their ability to induce IFN-γ and IL-10 expression by naive T cells, without affecting the maturation phenotype of the DCs.


Assuntos
Vacina BCG/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interleucina-18/biossíntese , Mycobacterium bovis/imunologia , Mycobacterium bovis/metabolismo , Adulto , Biomarcadores , Diferenciação Celular , Citocinas/metabolismo , Células Dendríticas/citologia , Vetores Genéticos/genética , Voluntários Saudáveis , Humanos , Memória Imunológica , Imunofenotipagem , Ativação Linfocitária/imunologia , Mycobacterium bovis/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/prevenção & controle , Vacinação
14.
Neural Plast ; 2015: 307175, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26229689

RESUMO

Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1ß, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets.


Assuntos
Encéfalo/metabolismo , Encéfalo/fisiopatologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/fisiopatologia , Plasticidade Neuronal , Peptídeos beta-Amiloides/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Interleucina-1beta/metabolismo , Esclerose Múltipla/terapia , Fragmentos de Peptídeos/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Recuperação de Função Fisiológica
15.
Mediators Inflamm ; 2014: 590409, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24692851

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS) in which activated T cell and neutrophil interactions lead to neuroinflammation. In this study the expression of CCR6, CXCR2, and CXCR6 in Th17 cells and neutrophils migrating to the brain during EAE was measured, alongside an evaluation of the production of IL-17, IL-23, CCL-20, and CXCL16 in the brain. Next, inflammatory cell subpopulations accumulating in the brain after intracerebral injections of IL-17 or CXCL1, as well as during modulation of EAE with anti-IL-23R or anti-CXCR2 antibodies, were analyzed. Th17 cells upregulate CXCR2 during the preclinical phase of EAE and a significant migration of these cells to the brain was observed. Neutrophils upregulated CCR6, CXCR2, and CXCR6 during EAE, accumulating in the brain both prior to and during acute EAE attacks. Production of IL-17, IL-23, CCL20, and CXCL16 in the CNS was increased during both preclinical and acute EAE. Intracerebral delivery of CXCL1 stimulated the early accumulation of neutrophils in normal and preclinical EAE brains but reduced the migration of Th17 cells to the brain during the preclinical stage of EAE. Modulation of EAE by anti-IL-23R antibodies ameliorated EAE by decreasing the intracerebral accumulation of Th17 cells.


Assuntos
Quimiocinas/imunologia , Encefalomielite Autoimune Experimental/fisiopatologia , Regulação da Expressão Gênica , Esclerose Múltipla/fisiopatologia , Neutrófilos/citologia , Células Th17/citologia , Animais , Encéfalo/metabolismo , Movimento Celular , Encefalomielite Autoimune Experimental/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Inflamação , Leucócitos Mononucleares/citologia , Camundongos , Esclerose Múltipla/metabolismo , Neurônios/patologia , Neutrófilos/metabolismo , Receptores CCR6/imunologia , Receptores CXCR/imunologia , Receptores CXCR6 , Receptores de Interleucina-8B/imunologia
16.
Clin Dev Immunol ; 2013: 851452, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23401703

RESUMO

The mechanisms that promote either resistance or susceptibility to TB disease remain insufficiently understood. Our aim was to compare the expression of cell signaling transduction receptors, CD14, TLR2, CD206, and ß2 integrin LFA-1 on monocytes from patients with active TB or nonmycobacterial lung disease and healthy individuals with M.tb latency and uninfected controls to explain the background of the differences between clinical and subclinical forms of M.tb infection. A simultaneous increase in the expression of the membrane bound mCD14 receptor and LFA-1 integrin in patients with active TB may be considered a prodrome of breaking immune control by M.tb bacilli in subjects with the latent TB and absence of clinical symptoms.


Assuntos
Tuberculose Latente/diagnóstico , Tuberculose Latente/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Monócitos/imunologia , Receptores de IgG/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Antígenos CD18/metabolismo , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Humanos , Lectinas Tipo C/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Pessoa de Meia-Idade , Monócitos/microbiologia , Prognóstico , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...