Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38793486

RESUMO

In this article, the results of research on a NiTi alloy with a high nickel content (51.7 at.%), produced using the additive technology SLM method and subjected to isothermal ageing after solution annealing, are presented. The study involved the determination of the sequence of phase transformations occurring using differential scanning calorimetry (DSC) and the determination of the temperature range of these transformations. In parallel, the phase composition was determined using the XRD method; the hardness and the Young's modulus were also determined. The analysis of the DSC results obtained indicates the following characteristic features of the NiTi alloy, which change with ageing time: (1) During cooling (from +150 °C to -50 °C), the type of transformation changes from a one-step transformation after solution annealing to a two-step transformation after the ageing process over 1, 20, and 100 h at 500 °C; (2) during heating (from -50 °C to +150 °C) for all the samples, regardless of the ageing time, only a one-step transformation from martensite M(B19') to austenite A(B2) is observed; (3) the temperature at which the transformation starts increases with the ageing time; (4) the width of the total temperature range of the transformation M(B19') → A(B2) during heating changes from large (ΔT = 49.7 °C), after solution annealing, to narrow (ΔT = 19.3 °C and ΔT = 17.9 °C after 20 h and 100 h of ageing); and, most importantly, (5) a comparison with the literature data shows that, irrespective of the composition of the NiTi alloy and the manufacturing technology of the alloy samples (regardless of whether this was traditional or additive technology), a sufficiently long ageing process period leads to the occurrence of the martensite → austenite transformation in the same temperature range.

2.
Materials (Basel) ; 14(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430054

RESUMO

One of the key components of the designing procedure of a structure of hard anti-wear coatings deposited via Physical Vapour Deposition (PVD) is the analysis of the stress and strain distributions in the substrate/coating systems, initiated during the deposition process and by external mechanical loads. Knowledge of residual stress development is crucial due to their significant influence on the mechanical and tribological properties of such layer systems. The main goal of the work is to find the optimal functionally graded material (FGM) coating's structure, composed of three functional layers: (1) adhesive layer, providing high adhesion of the coating to the substrate, (2) gradient load support and crack deflection layer, improving hardness and enhancing fracture toughness, (3) wear-resistant top layer, reducing wear. In the optimisation procedure of the coating's structure, seven decision criteria basing on the state of residual stresses and strains in the substrate/coating system were proposed. Using finite element simulations and postulated criteria, the thickness and composition gradients of the transition layer in FGM coating were determined. In order to verify the proposed optimisation procedure, Zr-C coatings with different spatial distribution of carbon concentration were produced by the Reactive Magnetron Sputtering PVD (RMS PVD) method and their anti-wear properties were assessed by scratch test and ball-on-disc tribological test.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...