Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744333

RESUMO

The article presents the results of the analysis of the influence of incremental sheet forming process parameters on surface roughness measured on both sides of conical drawpieces made from pure titanium Grade 2 sheets. The experimental plan was created on the basis of a central composite design. The study assumed the variability of feed rate, spindle speed, and incremental step size in the following range: 500-2000 mm/min, 0-600 rpm, and 0.1-0.5 mm, respectively. Two strategies differing in the direction of the tool rotation in relation to the feed direction were also analysed. Analysis of variance is performed to understand the adequacy of the proposed model and the influence of the input parameters on the specific roughness parameter. The sensitivity of the process parameter on the selected surface roughness parameters was assessed using artificial neural networks. It was found that the change in the surface roughness of the inner surface of the drawpiece is not related to the change of surface roughness of the outer side. The morphology of the outer surface of the draw pieces was uniform with a much greater profile height than the inner surface that had interacted with the tool. Taking into account the outer surface of the drawpiece, the direction of tool rotation is also most closely correlated with the parameters Sa, Sz, and Sku. Step size and feed rate provide the highest information capacity in relation to skewness and kurtosis of the inner surface of the drawpiece.

2.
Materials (Basel) ; 14(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34771897

RESUMO

Incremental sheet forming of titanium and its alloys has a significant role in modern manufacturing techniques because it allows for the production of high-quality products with complex shapes at low production costs. Stamping processes are a major contributor to plastic working techniques in industries such as automotive, aerospace and medicine. This article reviews the development of the single-point incremental forming (SPIF) technique in titanium and its alloys. Problems of a tribological and microstructural nature that make it difficult to obtain components with the desired geometric and shape accuracy are discussed. Great emphasis is placed on current trends in SPIF of difficult-to-form α-, α + ß- and ß-type titanium alloys. Potential uses of SPIF for forming products in various industries are also indicated, with a particular focus on medical applications. The conclusions of the review provide a structured guideline for scientists and practitioners working on incremental forming of titanium and titanium alloy sheets. One of the ways to increase the formability and minimize the springback of titanium alloys is to treat them at elevated temperatures. The main approaches developed for introducing temperature into a workpiece are friction heating, electrical heating and laser heating. The selection of an appropriate lubricant is a key aspect of the forming process of titanium and its alloys, which exhibit unfavorable tribological properties such as high adhesion and a tendency to adhesive wear. A review of the literature showed that there are insufficient investigations into the synergistic effect of rotational speed and tool rotation direction on the surface roughness of workpieces.

3.
Materials (Basel) ; 14(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279289

RESUMO

The aim of the research described in this paper is to analyse the synergistic effect of types of synthetic oil and their density on the value of the coefficient of friction (COF) of Ti-6Al-4V titanium alloy sheets. Lubrication performance of commercial synthetic oils (machine, gear, engine and hydraulic) was tested in a strip draw friction test. The friction tests consisted of pulling a strip specimen between two cylindrical fixed countersamples. The countersamples were placed in the simulator base mounted on a uniaxial tensile test machine. Due to the complex synergistic effect of different strip drawing test parameters on the COF, artificial neural networks were used to find this relationship. In the case of both dry and lubricated conditions, a clear trend was found of a reduction of the coefficient of friction with nominal pressure. Engine oil 10W-40 was found to be the least favourable lubricant in reducing the coefficient of friction of Grade 5 titanium sheets. The two main tribological mechanisms, i.e., galling and ploughing, played the most important role in the friction process on the test sheets. In the range of nominal pressures considered, and with the synthetic oils tested, the most favourable lubrication conditions can be obtained by using a type of oil with a low viscosity index and a high kinematic viscosity.

4.
Materials (Basel) ; 14(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209927

RESUMO

Single point incremental forming (SPIF) is an emerging process that is well-known to be suited for fabrication in small series production. The aim of this paper was to determine the optimal input parameters of the process in order to minimise the maximum of both the axial and the in-plane components of the forming force achieved during SPIF and the surface roughness of the internal surface of truncated-cone drawpieces. Grade 2 pure titanium sheets with a thickness of 0.4 mm were used as the test material. The central composite design and response surface method was used to determine the number of experiments required to study the responses through building a second-order quadratic model. Two directions of rotation of the forming tool were also considered. The input parameters were spindle speed, tool feed rate, and step size. The mathematical relations were defined using the response surfaces to predict the surface roughness of the drawpieces and the components of the forming force. It was found that feed rate has an insignificant role in both axial and in-plane forming forces, but step size is a major factor affecting axial and radial forming forces. However, step size directly affects the surface roughness on the inner surfaces of the drawpieces. Overall, the spindle speed -579 rpm (clockwise direction), tool feed 2000 mm/min, and step size 0.5 mm assure a minimisation of both force components and the surface roughness of drawpieces.

5.
Materials (Basel) ; 14(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063434

RESUMO

This paper presents the application of multi-layer artificial neural networks (ANNs) and backward elimination regression for the prediction of values of the coefficient of friction (COF) of Ti-6Al-4V titanium alloy sheets. The results of the strip drawing test were used as data for the training networks. The strip drawing test was carried out under conditions of variable load and variable friction. Selected types of synthetic oils and environmentally friendly bio-degradable lubricants were used in the tests. ANN models were conducted for different network architectures and training methods: the quasi-Newton, Levenberg-Marquardt and back propagation. The values of root mean square (RMS) error and determination coefficient were adopted as evaluation criteria for ANNs. The minimum value of the RMS error for the training set (RMS = 0.0982) and the validation set (RMS = 0.1493) with the highest value of correlation coefficient (R2 = 0.91) was observed for a multi-layer network with eight neurons in the hidden layer trained using the quasi-Newton algorithm. As a result of the non-linear relationship between clamping and friction force, the value of the COF decreased with increasing load. The regression model F-value of 22.13 implies that the model with R2 = 0.6975 is significant. There is only a 0.01% chance that an F-value this large could occur due to noise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...