Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Phys Lipids ; 164(6): 438-42, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21514284

RESUMO

Oxysterols are cholesterol (CH)-oxidized products generated in organs via either enzymatic or non-enzymatic pathways. Their presence or absence in cells, tissues and organs may provide information related to, for example, CH level and environmental status, inflammatory conditions near the CH molecules, activity of specific enzymes at and around the CH site, types and concentrations of biochemicals interacting with the CH, and the existence of specific signals. Here we present a mini-review of our lab findings on oxysterols formation in vitro and in vivo, including: the effects of different reactive species and availability of endogenous compounds on the type of oxysterol generated, the effects of enhanced activity of paraoxonase 1 or hemeoxygenase on oxysterol level, the correlation between human diseases such as diabetes and oxysterol accumulation, and the correlation between oxidative stress in neurons pre-Parkinsonian conditions in an animal model and intracellular oxidative stress.


Assuntos
Colesterol/metabolismo , Oxigênio/metabolismo , Animais , Colesterol/sangue , Diabetes Mellitus/sangue , Diabetes Mellitus/metabolismo , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Neostriado/metabolismo , Estresse Oxidativo
2.
Biomarkers ; 13(1): 119-31, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17852078

RESUMO

In the present study, we extend our novel concept of designing and using exogenous markers for the characterization of oxidative stress (OS) and OS-associated diseases. The aim was to use such a synthetic compound as a tool for studying OS in blood from diabetic and hypercholesterolaemic (Hc) patients. The marker used N-linoleoyl tyrosine (LT) was constructed from tyrosine and linoleic acid (LA); both components are known to be easily oxidized upon exposure to different types of reactive oxygen/nitrogen species (ROS/RNS), and to generate specific oxidized products, depending on the type of oxidants present in vivo. Using the LT probe, we showed that the ratios of oxidized LT to total LT (Ox-LT/LT) is significantly higher in blood samples obtained from diabetic patients, than in Hc patients or healthy control subjects. LC/MS analysis revealed that blood from diabetic patients oxidizes the marker with predominant formation of Ox-LT hydroperoxide (LT-OOH) and epoxide (epoxy-LT), where the LA moiety is oxidized to hydroperoxide and to epoxide, respectively. Analysis of oxysterol levels in these samples (GC/MS) revealed that the blood of both diabetic and Hc patients contained significantly more oxysterols than blood of control subjects. Consumption of pomegranate juice by diabetic patients for 3 months suppressed their blood capacity to oxidize the LT and similarly also reduced their blood oxysterol/total cholesterol ratio by 93%. The use of an exogenous marker to characterize OS in blood samples yields important information on the extent of OS, and can provide a fingerprint for the early identification of different pathological conditions associated with OS.


Assuntos
Diabetes Mellitus/sangue , Hipercolesterolemia/sangue , Ácidos Linoleicos , Estresse Oxidativo , Tirosina/análogos & derivados , Adulto , Antioxidantes/farmacologia , Bebidas , Diabetes Mellitus/fisiopatologia , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lythraceae , Pessoa de Meia-Idade , Oxirredução
3.
Free Radic Res ; 40(1): 41-52, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16298758

RESUMO

Oxidative stress and its resultant products continue to attract investigators. Numerous endogenous substances have been suggested as potential markers for the identification of oxidative stress in tissues and organisms. In this study, we present a novel concept whereby an exogenous marker is designed and synthesized for the characterization of oxidative stress. The designed marker is constructed from tyrosine (Tyr) and linoleic acid (LA), which are attached covalently to form N-linoleoyl tyrosine (N-LT). Each of the two components (Tyr and LA) is known to be easily oxidized upon exposure to different types of reactive species. Combining the two allows their distinction from the endogenous Tyr and LA in the tested biological samples. The ability of the N-LT marker to characterize oxidative stress in macrophage cell lines was first studied using different types of ROS/RNS. N-LT was found to interact with macrophages, binding to the cell membrane. Upon treatment of J-774 A.1 macrophages with N-LT (40 microM) and with various oxidants; HOCl (0.2, 0.4 mM), copper ions (20 microM), SIN-1 (0.1, 1.0 mM), specific oxidized N-LT (Ox-N-LT) products were formed, depending on the type of oxidant used. Exposing cells to HOCl (0.2 mM) resulted in exclusive attack of the LA residue of N-LT, preferentially forming an adduct of HOCl to the LA double bond (N-L(HOCl)T, 4.3%). In contrast, when SIN-1 (0.1 mM) was applied as the oxidant, the Tyr moiety of N-LT was most reactive, yielding a nitration product of the Tyr aromatic ring (N-LT(NO(2)), 1.8%). Similar N-LT oxidation in cell-free systems yielded a significantly higher content of Ox-N-LT (10.8% N-L(HOCl)T, 7% N-LT(NO(2)). The designed marker was then tested with peritoneal macrophages taken from atherosclerotic apolipoprotein-deficient (E(0)) mice showing specific and selective oxidation of N-LT to yield N-LT-hydroperoxide (1.9% N-L(OOH)T), at significantly higher levels than resulted from similar experiments using peritoneal macrophages harvested from control BalbC mice (0.0% N-L(OOH)T). In contrast, the differences in N-L(epoxy)T level between BalbC and E(0) mice were not significant using both types of peritoneal macrophages (E(0) and BalbC), suggesting that N-L(OOH)T is characteristic of the atherosclerotic state. Thus, we show that the designed marker is sufficiently sensitive to detect oxidative stress imposed on cells and cell-free systems and to react selectively with the various ROS/RNS induced. Such a marker may be useful for characterizing oxidative stress in general, and possibly also in oxidative-stress-associated diseases.


Assuntos
Ácido Linoleico/química , Macrófagos Peritoneais/metabolismo , Tirosina/química , Animais , Sistema Livre de Células , Células Cultivadas , Cobre/farmacologia , Ácido Hipocloroso/farmacologia , Ácido Linoleico/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Molsidomina/análogos & derivados , Molsidomina/farmacologia , Estresse Oxidativo/fisiologia , Tirosina/metabolismo
4.
Free Radic Res ; 37(12): 1277-88, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14753752

RESUMO

Identification of reliable biomarkers for oxidative stress for the prediction of the early development of pathological conditions is essential. The detection of biomarkers for oxidative stress such as degradation products of polyunsaturated fatty acid (PUFA), oxysterols, and oxidized proteins, as indicators of oxidative stress are in use, but suffers from insufficient specificity, accuracy and reliability. The overall aim of the present study was to develop new markers which will not only provide information about the presence and level of oxidative stress in biological systems but also on the type of reactive oxygen species (ROS) involved and their metabolic consequences. In the first stage of the study, we compared the level and type of oxidized products formed when different ROS were applied onto three major biomolecules, i.e. cholesterol, linoleic acid (LH) and tyrosine, representing sterols, PUFA and protein, when each compounds was exposed alone or in a mixture to the ROS [copper ions, 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH) and hypochlorous acid (HOCl)]. It was found that different types of oxidants resulted in the formation of different types of oxidation products. Furthermore, oxidation pattern differs when the substrates (cholesterol, PUFA or amino acid) were present alone or in a mixture. As biological systems such as lipoproteins and cell membranes are composed of the above studied molecules, the need for simultaneous detection of the major oxidized products is requires for better characterization of the oxidative stress outcome.


Assuntos
Colesterol/metabolismo , Ácido Linoleico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tirosina/metabolismo , Amidinas/farmacologia , Biomarcadores , Ácido Hipocloroso/farmacologia , Oxidantes/farmacologia , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...