Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33655273

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease-19 (COVID-19), a respiratory illness that can result in hospitalization or death. We investigated associations between rare genetic variants and seven COVID-19 outcomes in 543,213 individuals, including 8,248 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome-wide or when specifically focusing on (i) 14 interferon pathway genes in which rare deleterious variants have been reported in severe COVID-19 patients; (ii) 167 genes located in COVID-19 GWAS risk loci; or (iii) 32 additional genes of immunologic relevance and/or therapeutic potential. Our analyses indicate there are no significant associations with rare protein-coding variants with detectable effect sizes at our current sample sizes. Analyses will be updated as additional data become available, with results publicly browsable at https://rgc-covid19.regeneron.com.

2.
Proteins ; 38(4): 428-40, 2000 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-10707029

RESUMO

We have developed a novel, fully automatic method for aligning the three-dimensional structures of two proteins. The basic approach is to first align the proteins' secondary structure elements and then extend the alignment to include any equivalent residues found in loops or turns. The initial secondary structure element alignment is determined by a genetic algorithm. After refinement of the secondary structure element alignment, the protein backbones are superposed and a search is performed to identify any additional equivalent residues in a convergent process. Alignments are evaluated using intramolecular distance matrices. Alignments can be performed with or without sequential connectivity constraints. We have applied the method to proteins from several well-studied families: globins, immunoglobulins, serine proteases, dihydrofolate reductases, and DNA methyltransferases. Agreement with manually curated alignments is excellent. A web-based server and additional supporting information are available at http://engpub1.bu.edu/-josephs.


Assuntos
Algoritmos , Alinhamento de Sequência/métodos , Endopeptidases/química , Globinas/química , Humanos , Imunoglobulinas/química , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Tetra-Hidrofolato Desidrogenase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...