Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901896

RESUMO

Mild thiamine deficiency aggravates Zn accumulation in cholinergic neurons. It leads to the augmentation of Zn toxicity by its interaction with the enzymes of energy metabolism. Within this study, we tested the effect of Zn on microglial cells cultivated in a thiamine-deficient medium, containing 0.003 mmol/L of thiamine vs. 0.009 mmol/L in a control medium. In such conditions, a subtoxic 0.10 mmol/L Zn concentration caused non-significant alterations in the survival and energy metabolism of N9 microglial cells. Both activities of the tricarboxylic acid cycle and the acetyl-CoA level were not decreased in these culture conditions. Amprolium augmented thiamine pyrophosphate deficits in N9 cells. This led to an increase in the intracellular accumulation of free Zn and partially aggravated its toxicity. There was differential sensitivity of neuronal and glial cells to thiamine-deficiency-Zn-evoked toxicity. The co-culture of neuronal SN56 with microglial N9 cells reduced the thiamine-deficiency-Zn-evoked inhibition of acetyl-CoA metabolism and restored the viability of the former. The differential sensitivity of SN56 and N9 cells to borderline thiamine deficiency combined with marginal Zn excess may result from the strong inhibition of pyruvate dehydrogenase in neuronal cells and no inhibition of this enzyme in the glial ones. Therefore, ThDP supplementation can make any brain cell more resistant to Zn excess.


Assuntos
Microglia , Deficiência de Tiamina , Humanos , Microglia/metabolismo , Acetilcoenzima A/metabolismo , Deficiência de Tiamina/metabolismo , Neurônios Colinérgicos/metabolismo , Tiamina Pirofosfato/metabolismo , Colinérgicos/metabolismo , Zinco/metabolismo
2.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077475

RESUMO

The human brain is characterised by the most diverse morphological, metabolic and functional structure among all body tissues. This is due to the existence of diverse neurons secreting various neurotransmitters and mutually modulating their own activity through thousands of pre- and postsynaptic interconnections in each neuron. Astroglial, microglial and oligodendroglial cells and neurons reciprocally regulate the metabolism of key energy substrates, thereby exerting several neuroprotective, neurotoxic and regulatory effects on neuronal viability and neurotransmitter functions. Maintenance of the pool of mitochondrial acetyl-CoA derived from glycolytic glucose metabolism is a key factor for neuronal survival. Thus, acetyl-CoA is regarded as a direct energy precursor through the TCA cycle and respiratory chain, thereby affecting brain cell viability. It is also used for hundreds of acetylation reactions, including N-acetyl aspartate synthesis in neuronal mitochondria, acetylcholine synthesis in cholinergic neurons, as well as divergent acetylations of several proteins, peptides, histones and low-molecular-weight species in all cellular compartments. Therefore, acetyl-CoA should be considered as the central point of metabolism maintaining equilibrium between anabolic and catabolic pathways in the brain. This review presents data supporting this thesis.


Assuntos
Encéfalo , Neurônios Colinérgicos , Acetilcoenzima A/metabolismo , Acetilação , Encéfalo/metabolismo , Sobrevivência Celular/fisiologia , Neurônios Colinérgicos/metabolismo , Humanos , Mitocôndrias/metabolismo
3.
Int J Mol Sci ; 22(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34948135

RESUMO

Brain pathologies evoked by thiamine deficiency can be aggravated by mild zinc excess. Cholinergic neurons are the most susceptible to such cytotoxic signals. Sub-toxic zinc excess aggravates the injury of neuronal SN56 cholinergic cells under mild thiamine deficiency. The excessive cell loss is caused by Zn interference with acetyl-CoA metabolism. The aim of this work was to investigate whether and how astroglial C6 cells alleviated the neurotoxicity of Zn to cultured SN56 cells in thiamine-deficient media. Low Zn concentrations did not affect astroglial C6 and primary glial cell viability in thiamine-deficient conditions. Additionally, parameters of energy metabolism were not significantly changed. Amprolium (a competitive inhibitor of thiamine uptake) augmented thiamine pyrophosphate deficits in cells, while co-treatment with Zn enhanced the toxic effect on acetyl-CoA metabolism. SN56 cholinergic neuronal cells were more susceptible to these combined insults than C6 and primary glial cells, which affected pyruvate dehydrogenase activity and the acetyl-CoA level. A co-culture of SN56 neurons with astroglial cells in thiamine-deficient medium eliminated Zn-evoked neuronal loss. These data indicate that astroglial cells protect neurons against Zn and thiamine deficiency neurotoxicity by preserving the acetyl-CoA level.


Assuntos
Neurônios Colinérgicos/metabolismo , Neuroglia/metabolismo , Deficiência de Tiamina/prevenção & controle , Zinco/toxicidade , Animais , Linhagem Celular Tumoral , Meios de Cultura , Camundongos , Tiamina/metabolismo , Tiamina/farmacologia , Deficiência de Tiamina/metabolismo
4.
Eur J Neurosci ; 54(3): 5173-5188, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34145920

RESUMO

EBI2 receptor regulates the immune system, and in multiple, sclerosis is upregulated in the central nervous system infiltrating lymphocytes. In newborn EBI2-deficient mice, myelin development is delayed, and its persistent antagonism inhibits remyelination in chemically demyelinated organotypic cerebellar slices. We used the cuprizone model of multiple sclerosis to elucidate the role of central nervous system-expressed EBI2 in de- and remyelination. The wild-type and EBI2 knock-out mice were fed 0.2% cuprizone in chow for 5 weeks and allowed to recover on a normal diet for 2 weeks. The data showed less efficient recovery of myelin, attenuated oligodendrocyte loss, fewer astrocytes and increased total cholesterol levels in the EBI2 knock-out mice after recovery. Moreover, the wild-type mice upregulated EBI2 expression after recovery confirming the involvement of EBI2 signalling during recovery from demyelination in the cuprizone model. The pro-inflammatory cytokine levels were at comparable levels in the wild-type and EBI2 knock-out mice, with only minor differences in TNFα and IL1ß levels either at peak or during recovery. The neuroinflammatory signalling molecules, Abl1 kinase and NFКB1 (p105/p50) subunit, were significantly downregulated in the EBI2 knock-out mice at peak of disease. Immunohistochemical investigations of EBI2 receptor distribution in the central nervous system (CNS) cells in multiple sclerosis (MS) brain revealed strong expression of EBI2 in astrocytes and microglia inside the plaques implicating glia-expressed EBI2 in multiple sclerosis pathophysiology. Taken together, these findings demonstrate the involvement of EBI2 signalling in the recovery from demyelination rather than in demyelination and as such warrant further research into the role of EBI2 in remyelination.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Remielinização , Animais , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina , Neuroglia , Oligodendroglia , Esclerose
5.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919387

RESUMO

The EBI2 receptor regulates the immune system and is expressed in various immune cells including B and T lymphocytes. It is also expressed in astrocytes in the central nervous system (CNS) where it regulates pro-inflammatory cytokine release, cell migration and protects from chemically induced demyelination. Its signaling and expression are implicated in various diseases including multiple sclerosis, where its expression is increased in infiltrating immune cells in the white matter lesions. Here, for the first time, the EBI2 protein in the CNS cells in the human brain was examined. The function of the receptor in MO3.13 oligodendrocytes, as well as its role in remyelination in organotypic cerebellar slices, were investigated. Human brain sections were co-stained for EBI2 receptor and various markers of CNS-specific cells and the human oligodendrocyte cell line MO3.13 was used to investigate changes in EBI2 expression and cellular migration. Organotypic cerebellar slices prepared from wild-type and cholesterol 25-hydroxylase knock-out mice were used to study remyelination following lysophosphatidylcholine (LPC)-induced demyelination. The data showed that EBI2 receptor is present in OPCs but not in myelinating oligodendrocytes in the human brain and that EBI2 expression is temporarily upregulated in maturing MO3.13 oligodendrocytes. Moreover, we show that migration of MO3.13 cells is directly regulated by EBI2 and that its signaling is necessary for remyelination in cerebellar slices post-LPC-induced demyelination. The work reported here provides new information on the expression and role of EBI2 in oligodendrocytes and myelination and provides new tools for modulation of oligodendrocyte biology and therapeutic approaches for demyelinating diseases.


Assuntos
Encéfalo/citologia , Cerebelo/citologia , Oligodendroglia/citologia , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/citologia , Animais , Encéfalo/metabolismo , Cerebelo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/genética , Remielinização , Células-Tronco/metabolismo
6.
Nutr Neurosci ; 24(6): 432-442, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31331253

RESUMO

Objectives: Zinc excitotoxicity and thiamine pyrophosphate deficiency (TD) are known pathogenic signals contributing to mechanism of different encephalopathies through inhibition of enzymes responsible for energy metabolism such as pyruvate dehydrogenase, aconitase or ketoglutarate dehydrogenase. The aim of this work was to investigate whether subclinical Zn excess and TD, frequent in aging brain, may combine yielding overt neuronal impairment.Results: Clonal SN56 cholinergic neuronal cells of septal origin were used as the model of brain cholinergic neurons, which are particularly susceptible to neurodegeneration in the course of Alzheimer's disease, hypoxia and other dementia-linked brain pathologies. Neither subtoxic concentration of Zn (0.10 mM) nor mild 20-25% TD deficits alone caused significant negative changes in cultured cholinergic neurons viability and their acetyl-CoA/acetylcholine metabolism. However, cells with mild TD accumulated Zn in excess, which impaired their energy metabolism causing a loss of neurons viability and their function as neurotransmitters. These negative effects of Zn were aggravated by amprolium which is an inhibitor of thiamine intracellular transport.Conclusion: Our data indicate that TD may amplify otherwise non-harmful border-line Zn excitotoxic signals yielding progress of neurodegeneration.


Assuntos
Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Deficiência de Tiamina/metabolismo , Zinco/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos
7.
Pharmacol Rep ; 72(1): 225-237, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32016856

RESUMO

BACKGROUND: Hyperactivation of blood platelets is an essential factor in the pathomechanism of diabetes-evoked angiopathies. The aim of this work was to investigate whether blood platelets hyperactivation resulting from type 2 diabetic hyperglycaemia-increased pyruvate dehydrogenase complex activity and excessive acetyl-CoA accumulation may be brought to the normal range by the enzyme inhibitors. METHODS: Platelets were isolated from the blood of 9 type 2 diabetic patients and 10 healthy donors. Effects of 3-bromopyruvate and 3-nitropropionate on pyruvate dehydrogenase complex (PDHC) and succinate dehydrogenase activities, as well as levels of acetyl-CoA, ATP, thiobarbituric acid reactive species and aggregation were assessed in non-activated and thrombin-activated platelets. RESULTS: In type 2 diabetic patients fasting plasma glucose and fructosamine levels were 61 and 64% higher, respectively, than in the healthy group (p < 0.001). In non-activated diabetic platelets PDHC activity, PDHC-E2, acetyl-CoA and ATP levels were 66, 70, 68 and 60%, higher, respectively, than in platelets from healthy controls (p < 0.01). 3-bromopyruvate (0.1 mM) decreased pyruvate dehydrogenase activity in healthy and diabetic platelets by 42% and 59%, respectively. Similar inhibitory effects were observed for acetyl-CoA and ATP levels, aggregation and TBARS accumulation rates. Succinate dehydrogenase activity was inhibited by 3-nitropropionate (10 mM) to 38 and 41% of control values in healthy and diabetic platelets, respectively, but affected neither function nor acetyl-CoA metabolism in platelets of both groups. CONCLUSIONS: These data indicate that inhibition of pyruvate dehydrogenase excessive activity in diabetic platelets by 3-bromopyruvate may normalise their functional parameters through adjustment of acetyl-CoA/ATP levels to control values. Platelets from blood of diabetic patients display higher activities of pyruvate dehydrogenase complex (PDHC), higher levels of dihydrolipoate transacetylase (DLAT, E2 subunit of PDHC) as well as higher levels of acetyl-CoA yielding greater ATP/ADP accumulation than in platelets of normoglycemic subjects. Therefore, in diabetic platelets, thrombin caused higher release of ATP/ADP triggering excessive production of reactive oxygen species (ROS) and stronger aggregation compared to control platelets. In diabetic platelets, relative excess of DLAT in PDHC made them highly susceptible to 3-bromopyruvate (3BrP) inhibition. Resulting limitation of acetyl-CoA provision by 3-BrP normalised activity of diabetic platelets.


Assuntos
Plaquetas/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Piruvatos/farmacologia , Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/fisiopatologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nitrocompostos/farmacologia , Propionatos/farmacologia , Succinato Desidrogenase/metabolismo
8.
PLoS One ; 13(12): e0209363, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30571745

RESUMO

One of the pathological site effects in excitotoxic activation is Zn2+ overload to postsynaptic neurons. Such an effect is considered to be equivalent to the glutamate component of excitotoxicity. Excessive uptake of Zn2+ by active voltage-dependent transport systems in these neurons may lead to significant neurotoxicity. The aim of this study was to investigate whether and which antagonists of the voltage gated calcium channels (VGCC) might modify this Zn2+-induced neurotoxicity in neuronal cells. Our data demonstrates that depolarized SN56 neuronal cells may take up large amounts of Zn2+ and store these in cytoplasmic and mitochondrial sub-fractions. The mitochondrial Zn2+ excess suppressed pyruvate uptake and oxidation. Such suppression was caused by inhibition of pyruvate dehydrogenase complex, aconitase and NADP-isocitrate dehydrogenase activities, resulting in the yielding of acetyl-CoA and ATP shortages. Moreover, incoming Zn2+ increased both oxidized glutathione and malondialdehyde levels, known parameters of oxidative stress. In depolarized SN56 cells, nifedipine treatment (L-type VGCC antagonist) reduced Zn2+ uptake and oxidative stress. The treatment applied prevented the activities of PDHC, aconitase and NADP-IDH enzymes, and also yielded the maintenance of acetyl-CoA and ATP levels. Apart from suppression of oxidative stress, N- and P/Q-type VGCCs presented a similar, but weaker protective influence. In conclusion, our data shows that in the course of excitotoxity, impairment to calcium homeostasis is tightly linked with an excessive neuronal Zn2+ uptake. Hence, the VGCCs types L, N and P/Q share responsibility for neuronal Zn2+ overload followed by significant energy-dependent neurotoxicity. Moreover, Zn2+ affects the target tricarboxylic acid cycle enzymes, yields acetyl-CoA and energy deficits as well.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo N/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurotoxinas/metabolismo , Zinco/metabolismo , Animais , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Metabolismo Energético/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Neuroblastoma/patologia , Nifedipino/farmacologia
9.
Front Cell Neurosci ; 12: 169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050410

RESUMO

Brain neurons, to support their neurotransmitter functions, require a several times higher supply of glucose than non-excitable cells. Pyruvate, the end product of glycolysis, through pyruvate dehydrogenase complex reaction, is a principal source of acetyl-CoA, which is a direct energy substrate in all brain cells. Several neurodegenerative conditions result in the inhibition of pyruvate dehydrogenase and decrease of acetyl-CoA synthesis in mitochondria. This attenuates metabolic flux through TCA in the mitochondria, yielding energy deficits and inhibition of diverse synthetic acetylation reactions in all neuronal sub-compartments. The acetyl-CoA concentrations in neuronal mitochondrial and cytoplasmic compartments are in the range of 10 and 7 µmol/L, respectively. They appear to be from 2 to 20 times lower than acetyl-CoA Km values for carnitine acetyltransferase, acetyl-CoA carboxylase, aspartate acetyltransferase, choline acetyltransferase, sphingosine kinase 1 acetyltransferase, acetyl-CoA hydrolase, and acetyl-CoA acetyltransferase, respectively. Therefore, alterations in acetyl-CoA levels alone may significantly change the rates of metabolic fluxes through multiple acetylation reactions in brain cells in different physiologic and pathologic conditions. Such substrate-dependent alterations in cytoplasmic, endoplasmic reticulum or nuclear acetylations may directly affect ACh synthesis, protein acetylations, and gene expression. Thereby, acetyl-CoA may regulate the functional and adaptative properties of neuronal and non-neuronal brain cells. The excitotoxicity-evoked intracellular zinc excess hits several intracellular targets, yielding the collapse of energy balance and impairment of the functional and structural integrity of postsynaptic cholinergic neurons. Acute disruption of brain energy homeostasis activates slow accumulation of amyloid-ß1-42 (Aß). Extra and intracellular oligomeric deposits of Aß affect diverse transporting and signaling pathways in neuronal cells. It may combine with multiple neurotoxic signals, aggravating their detrimental effects on neuronal cells. This review presents evidences that changes of intraneuronal levels and compartmentation of acetyl-CoA may contribute significantly to neurotoxic pathomechanisms of different neurodegenerative brain disorders.

10.
J Alzheimers Dis ; 56(3): 1145-1158, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28106547

RESUMO

Pyruvate dehydrogenase reaction utilizing glucose-derived pyruvate is an almost exclusive source of acetyl-CoA in different cell mitochondrial compartments of the brain. In neuronal mitochondria, the largest fraction of acetyl-CoA is utilized for energy production and the much smaller one for N-acetyl-L-aspartate (NAA) synthesis. Cholinergic neurons, unlike others, require additional amounts of acetyl-CoA for acetylcholine synthesis. Therefore, several neurotoxic signals, which inhibit pyruvate dehydrogenase, generate deeper shortages of acetyl-CoA and greater mortality of cholinergic neurons than noncholinergic ones. NAA is considered to be a marker of neuronal energy status in neuropathic brains. However, there is no data on putative differential fractional distribution of the acetyl-CoA pool between energy producing and NAA or acetylcholine synthesizing pathways in noncholinergic and cholinergic neurons, respectively. Therefore, the aim of this study was to investigate whether zinc-excess, a common excitotoxic signal, may evoke differential effects on the NAA metabolism in neuronal cells with low and high expression of the cholinergic phenotype. Differentiated SN56 neuronal cells, displaying a high activity of choline acetyltransferase and rates of acetylcholine synthesis, contained lower levels of acetyl-CoA and NAA, being more susceptible to ZnCl2 exposition that the nondifferentiated SN56 or differentiated dopaminergic SHSY5Y neuronal and astroglial C6 cells. Differentiated SN56 accumulated greater amounts of Zn2 + from extracellular space than the other ones, and displayed a stronger suppression of pyruvate dehydrogenase complex activity and acetyl-CoA, NAA, ATP, acetylcholine levels, and loss of viability. These data indicate that the acetyl-CoA synthesizing system in neurons constitutes functional unity with energy generating and NAA or acetylcholine pathways of its utilization, which are uniformly affected by neurotoxic conditions.


Assuntos
Acetilcoenzima A/metabolismo , Ácido Aspártico/análogos & derivados , Neurônios Colinérgicos/metabolismo , Septo do Cérebro/metabolismo , Zinco/toxicidade , Acetiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ácido Aspártico/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Espaço Extracelular/metabolismo , Glicerol Quinase , Cetona Oxirredutases/metabolismo , Camundongos , Septo do Cérebro/patologia
11.
Neurochem Res ; 42(3): 891-904, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28039593

RESUMO

There are several systemic and intracerebral pathologic conditions, which limit provision and utilization of energy precursor metabolites in neuronal cells. Energy deficits cause excessive depolarization of neuronal cells triggering glutamate-zinc evoked excitotoxic cascade. The intracellular zinc excess hits several intraneuronal targets yielding collapse of energy balance and impairment functional and structural impairments cholinergic neurons. Disturbances in metabolism of acetyl-CoA, which is a direct precursor for energy, acetylcholine, N-acetyl-L-aspartate and acetylated proteins synthesis, play an important role in these pathomechanisms. Disruption of brain homeostasis activates slow accumulation of amyloid-ß 1-42 , which extra and intracellular oligomeric deposits disrupt diverse transporting and signaling processes in all membrane structures of the cell. Both neurotoxic signals may combine aggravating detrimental effects on neuronal cell. Different neuroglial and neuronal cell types may display differential susceptibility to similar pathogenic insults depending on specific features of their energy and functional parameters. This review, basing on findings gained from cellular and animal models of Alzheimer's disease, discusses putative energy/acetyl-CoA dependent mechanism in early and late stages of neurodegeneration.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Zinco/metabolismo , Acetilcoenzima A/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Metabolismo Energético , Humanos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Complexo Piruvato Desidrogenase/metabolismo
12.
J Alzheimers Dis ; 48(4): 1083-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26402099

RESUMO

The pyruvate-derived acetyl-CoA is a principal direct precursor substrate for bulk energy synthesis in the brain. Deficits of pyruvate dehydrogenase in the neocortex are common features of Alzheimer's disease and other age-related encephalopathies in humans. Therefore, amyloid-ß overload in brains of diverse transgenic Alzheimer's disease model animals was investigated as one of neurotoxic compounds responsible for pyruvate dehydrogenase inhibition yielding deficits of cholinergic neurotransmission and cognitive functions. Brains of aged, 14-16-month-old Tg2576 mice contained 0.6 µmol/kg levels of amyloid-ß1 - 42. Activities of pyruvate dehydrogenase complex, choline acetyltransferase, and several enzymes of acetyl-CoA and energy metabolism were found to be unchanged in both forebrain mitochondria and synaptosomes of Tg2576 mice, indicating preservation of structural integrity at least in cholinergic neuronal cells. However, in transgenic brain synaptosomes, pyruvate utilization, mitochondrial levels, and cytoplasmic acetyl-CoA levels, as well as acetylcholine content and its quantal release, were all found to be decreased by 25-40% . On the contrary, activation of pyruvate utilization was detected and no alterations in acetyl-CoA content and citrate or α-ketoglutarate accumulation were observed in transgenic whole brain mitochondria. These data indicate that amyloid-ß evoked deficits in acetyl-CoA are confined to mitochondrial and cytoplasmic compartments of Tg2576 nerve terminals, becoming early primary signals paving the path for further stages of neurodegeneration. On the other hand, acetyl-CoA synthesis in mitochondrial compartments of glial cells seems to be activated despite amyloid-ß accumulated in transgenic brains.


Assuntos
Acetilcoenzima A/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Acetilcolina/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Ácido Cítrico/metabolismo , Citoplasma/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Ácidos Cetoglutáricos/metabolismo , Masculino , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mutação , Neuroglia/patologia , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Ácido Pirúvico/metabolismo , Sinaptossomos/metabolismo
13.
J Surg Oncol ; 112(4): 408-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26251082

RESUMO

BACKGROUND: Several molecular markers are currently being investigated for their prognostic or predictive value in colorectal cancer. One of the genes proposed, as a potential molecular marker in CRC is CAV1. METHODS: The level of CAV1 expression was investigated in low-stage (I and II TNM) colon cancers using Real-Time PCR and immunohistochemistry. RESULTS: The level of CAV1 expression increased in tumors characterized by greater depths of invasiveness. The CAV1 expression level detected in tumors with a depth of invasion at stage T4 was significantly higher compared to that in T2 (P = 0.01) and T3 (P = 0.003) lesions. The length of a patient's survival depended on CAV1 expression level; the 10-year survival rate for patients with elevated expression of CAV1 was ∼59% compared with 91% for patients with reduced or unchanged expression of CAV1 (P = 0.007). The overall survival rate of patients with T3 + T4 lesions was significantly lower (P = 0.006) for patients with tumor displaying elevated CAV1 expression compared with patients with reduced or unchanged CAV1 expression. CONCLUSIONS: Evaluation of CAV1 expression offers valuable prognostic information for patients with colorectal cancer, and could be used to select patients with stage I or II disease, who are at increased risk of unfavorable outcomes.


Assuntos
Biomarcadores Tumorais/metabolismo , Caveolina 1/metabolismo , Diferenciação Celular , Colo/patologia , Neoplasias do Colo/patologia , Idoso , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Caveolina 1/genética , Colo/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/mortalidade , Feminino , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Masculino , Gradação de Tumores , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco , Taxa de Sobrevida
14.
Expert Rev Neurother ; 15(3): 239-49, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25683350

RESUMO

Retinoic acid is a potent cell differentiating factor, which through its nuclear receptors affects a vast range of promoter sites in brain neuronal and glial cells in every step of embryonic and postnatal life. Its capacities, facilitating maturation of neurotransmitter phenotype in different groups of neurons, pave the way for its application as a potential therapeutic agent in neurodegenerative diseases including Alzheimer's disease. Retinoic acid was found to exert particularly strong enhancing effects on acetylcholine transmitter functions in brain cholinergic neurons, loss of which is tightly linked to the development of cognitive and memory deficits in course of different cholinergic encephalopathies. Here, we review cholinotrophic properties of retinoic acid and its derivatives, which may justify their application in the management of Alzheimer's disease and the related neurodegenerative conditions.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Tretinoína/uso terapêutico , Doença de Alzheimer/patologia , Encéfalo/patologia , Neurônios Colinérgicos/patologia , Humanos , Resultado do Tratamento , Tretinoína/farmacologia
15.
J Neurochem ; 133(2): 284-97, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25345568

RESUMO

There are significant differences between acetyl-CoA and ATP levels, enzymes of acetyl-CoA metabolism, and toll-like receptor 4 contents in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Exposition of N9 cells to lipopolysaccharide caused concentration-dependent several-fold increases of nitrogen oxide synthesis, accompanied by inhibition of pyruvate dehydrogenase complex, aconitase, and α-ketoglutarate dehydrogenase complex activities, and by nearly proportional depletion of acetyl-CoA, but by relatively smaller losses in ATP content and cell viability (about 5%). On the contrary, SN56 cells appeared to be insensitive to direct exposition to high concentration of lipopolysaccharide. However, exogenous nitric oxide resulted in marked inhibition pyruvate dehydrogenase and aconitase activities, depletion of acetyl-CoA, along with respective loss of SN56 cells viability. These data indicate that these two common neurodegenerative signals may differentially affect energy-acetyl-CoA metabolism in microglial and cholinergic neuronal cell compartments in the brain. Moreover, microglial cells appeared to be more resistant than neuronal cells to acetyl-CoA and ATP depletion evoked by these neurodegenerative conditions. Together, these data indicate that differential susceptibility of microglia and cholinergic neuronal cells to neurotoxic signals may result from differences in densities of toll-like receptors and degree of disequilibrium between acetyl-CoA provision in mitochondria and its utilization for energy production and acetylation reactions in each particular group of cells. There are significant differences between acetyl-CoA and ATP levels and enzymes of acetyl-CoA metabolism in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Pathological stimulation of microglial toll-like receptors (TLRs) triggered excessive synthesis of microglia-derived nitric oxide (NO)/NOO radicals that endogenously inhibited pyruvate dehydrogenase complex (PDHC), aconitase, and α-ketoglutarate dehydrogenase complex. However, it caused none or small suppressions of acetyl-CoA and microglial viability, respectively. Microglia-derived NO inhibited same enzymes in cholinergic neuronal cells causing marked viability loss because of acetyl-CoA deficits evoked by its competitive consumption by energy producing and acetylcholine/N-acetyl-l-aspartate (NAA) synthesizing pathways.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Colinérgicos/metabolismo , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptor 4 Toll-Like/metabolismo
16.
Biochem Soc Trans ; 42(4): 1101-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25110009

RESUMO

Intramitochondrial decarboxylation of glucose-derived pyruvate by PDHC (pyruvate dehydrogenase complex) is a principal source of acetyl-CoA, for mitochondrial energy production and cytoplasmic synthetic pathways in all types of brain cells. The inhibition of PDHC, ACO (aconitase) and KDHC (ketoglutarate dehydrogenase complex) activities by neurodegenerative signals such as aluminium, zinc, amyloid ß-peptide, excess nitric oxide (NO) or thiamine pyrophosphate deficits resulted in much deeper losses of viability, acetyl-CoA and ATP in differentiated cholinergic neuronal cells than in non-differentiated cholinergic, and cultured microglial or astroglial cell lines. In addition, in cholinergic cells, such conditions caused inhibition of ACh (acetylcholine) synthesis and its quantal release. Furthermore, cholinergic neuronal cells appeared to be resistant to high concentrations of LPS (lipopolysaccharide). In contrast, in microglial cells, low levels of LPS caused severalfold activation of NO, IL-6 (interleukin 6) and TNFα (tumour necrosis factor α) synthesis/release, accompanied by inhibition of PDHC, KDHC and ACO activities, and suppression of acetyl-CoA, but relatively small losses in their ATP contents and viability parameters. Compounds that protected these enzymes against inhibitory effects of neurotoxins alleviated acetyl-CoA and ATP deficits, thereby maintaining neuronal cell viability. These data indicate that preferential susceptibility of cholinergic neurons to neurodegenerative insults may result from competition for acetyl-CoA between mitochondrial energy-producing and cytoplasmic ACh-synthesizing pathways. Such a hypothesis is supported by the existence of highly significant correlations between mitochondrial/cytoplasmic acetyl-CoA levels and cell viability/transmitter functions respectively.


Assuntos
Acetilcoenzima A/metabolismo , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Animais , Coenzima A/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
17.
Neurochem Res ; 38(8): 1523-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23677775

RESUMO

Glucose-derived pyruvate is a principal source of acetyl-CoA in all brain cells, through pyruvate dehydogenase complex (PDHC) reaction. Cholinergic neurons like neurons of other transmitter systems and glial cells, utilize acetyl-CoA for energy production in mitochondria and diverse synthetic pathways in their extramitochondrial compartments. However, cholinergic neurons require additional amounts of acetyl-CoA for acetylcholine synthesis in their cytoplasmic compartment to maintain their transmitter functions. Characteristic feature of several neurodegenerating diseases including Alzheimer's disease and thiamine diphosphate deficiency encephalopathy is the decrease of PDHC activity correlating with cholinergic deficits and losses of cognitive functions. Such conditions generate acetyl-CoA deficits that are deeper in cholinergic neurons than in noncholinergic neuronal and glial cells, due to its additional consumption in the transmitter synthesis. Therefore, any neuropathologic conditions are likely to be more harmful for the cholinergic neurons than for noncholinergic ones. For this reason attempts preserving proper supply of acetyl-CoA in the diseased brain, should attenuate high susceptibility of cholinergic neurons to diverse neurodegenerative conditions. This review describes how common neurodegenerative signals could induce deficts in cholinergic neurotransmission through suppression of acetyl-CoA metabolism in the cholinergic neurons.


Assuntos
Acetilcoenzima A/fisiologia , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Doenças Neurodegenerativas/patologia , Receptores Colinérgicos/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Humanos
18.
Arch Biochem Biophys ; 535(2): 248-56, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23608074

RESUMO

Toxicity of vanadium on cells is one of the less studied effects. This prompted us to study the structural effects induced on neuroblastoma and erythrocytes by vanadium (V) sodium metavanadate. This salt was incubated with mice cholinergic neuroblastoma cells and intact human erythrocytes. To learn whether metavanadate interacts with membrane lipid bilayers it was incubated with bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). These are phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. Exposure of neuroblastoma cells to metavanadate showed significant decreases in cell viability as well as in cell number correlating with inhibition of aconitase activity. In scanning electron microscopy (SEM) and defocusing microscopy (DM) it was observed that induced on erythrocytes the formation of echinocytes. However, no effects were obtained when metavanadate was made to interact with DMPC and DMPE multibilayers and liposomes, assays performed by X-ray diffraction and differential scanning calorimetry (DSC), respectively. These results imply that the effects of metavanadate on erythrocytes are through interactions with proteins located in the membrane outer moiety, and could still involve other minor lipid components as well. Also, partly unsaturated lipids could interact differently the fully saturated chains in the model systems.


Assuntos
Eritrócitos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Vanadatos/farmacologia , Acetilcoenzima A/metabolismo , Animais , Varredura Diferencial de Calorimetria , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dimiristoilfosfatidilcolina/química , Eritrócitos/citologia , Humanos , Lipossomos , Camundongos , Microscopia Eletrônica de Varredura , Neuroblastoma , Neurônios/citologia , Neurônios/metabolismo , Fosfatidiletanolaminas/química , Vanadatos/química , Vanadatos/toxicidade , Difração de Raios X
19.
Arch Biochem Biophys ; 533(1-2): 47-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23454010

RESUMO

The study aimed to evaluate the impact of adenosine receptors (ARs) on human colon tumor cells (HCT 116, HT-29) growth and sensitivity to 5-Fluorouracil (5-FU) an anticancer chemotherapeutic drug. The exposure of cancer cells to a selective A(3)-AR agonist (IB-MECA) resulted in an increase in HT-29 cells number, whereas the number of HCT 116 cells decreased significantly. In the presence of IB-MECA (1 µM) the percentage of apoptotic HT-29 cells significantly decreased, whereas the number of apoptotic and necrotic HCT 116 cells increased by 3- and 2,5-fold, respectively. The application of a selective A(2A)-AR agonist resulted in the increased survival of HCT 116 cells, but not HT-29 cells. The blockade of A(2A)-AR with ZM 241385 (0.1 µM) significantly increased the cytotoxicity of 5-FU (1 µM) in HCT 116 cells but not in HT-29 cells. The suppression of A(3)-AR with MRS 1523 (1 µM) increased the sensitivity of HT-29 cells to 5-FU while response of HCT 116 cells to 5-FU decreased. The growth promoting effect of IB-MECA in HT-29 cells was associated with the decreased intracellular cAMP level, whereas IB-MECA growth inhibitory effect in HCT 116 cells was abolished by okadaic acid (2 nM) indicating the involvement of protein phosphatase PP2A.


Assuntos
Neoplasias do Colo/patologia , Receptores Purinérgicos P1/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Proteína Fosfatase 2/metabolismo , Agonistas do Receptor Purinérgico P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptor A3 de Adenosina/genética , Receptor A3 de Adenosina/metabolismo , Receptores Purinérgicos P1/genética , Transdução de Sinais/efeitos dos fármacos
20.
Int J Biochem Cell Biol ; 45(7): 1246-54, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23523697

RESUMO

Diabetes-associated lymphocyte dysfunction may be attributed to the direct effect of hyperglycemia, but the impact of glucose concentration on B cell functionality is not fully resolved. Since, adenosine 5'-triphosphate (ATP) and its metabolite adenosine are the core constituents of the purinergic signaling network involved in regulation of immune response we aimed to investigate the impact of high glucose concentration on ATP outflow and metabolism on B cell surface. Purified human peripheral blood B cells cultured at high glucose (25 mM) concentration released significantly less ATP (~60%) comparing to cells cultured in low glucose (5mM) concentration. We observed that high glucose altered ATP hydrolysis on B cell surface due to increased activity of nucleoside triphosphate diphosphohydrolase-1 (NTPDase-1/CD39). In the presence of 10 µM [(3)H]AMP and 100 µM ATP significant quantities of [(3)H]ADP and [(3)H]ATP were generated, although the AMP to ADP phosphorylation potential of B cells cultured in high glucose decreased significantly. The flow cytometry analysis revealed that the level of ecto-adenylate kinase 1ß (AK1ß) on surface of B cells cultured in high glucose decreased significantly. Inhibition of NTPDase1/CD39 activity with 100 µM ARL67156 resulted in decreased cell viability, although significantly more viable cells retained in the culture media containing low glucose compared to high glucose media. Selective inhibition of P2X7 purinergic receptor irrespective of glucose concentration completely protected B cells against the ARL 67156-induced cell death. We assume that high glucose-induced alteration of ATP handling on B cell surface might contribute to impaired functionality of B cells in diabetes.


Assuntos
Trifosfato de Adenosina/metabolismo , Linfócitos B/metabolismo , Glucose/metabolismo , Adenosina , Adenosina Trifosfatases/antagonistas & inibidores , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/biossíntese , Adenilato Quinase/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Fosforilação/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...