Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr A Found Adv ; 80(Pt 1): 104-111, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031931

RESUMO

It is demonstrated that Kikuchi features become clearly visible if reflection high-energy electron diffraction (RHEED) patterns are filtered using digital image processing software. The results of such pattern transformations are shown for SrTiO3 with mixed surface termination for data collected at different azimuths of the incident electron beam. A simplified analytical approach for the theoretical description of filtered Kikuchi patterns is proposed and discussed. Some examples of raw and filtered patterns for thin films are shown. RHEED patterns may be treated as a result of coherent and incoherent scattering of electron waves. The effects of coherent scattering may be considered as those occurring due to wave diffraction by an idealized crystal and, usually, only effects of this type are analysed to obtain structural information on samples investigated with the use of RHEED. However, some incoherent scattering effects mostly caused by thermal vibrations of atoms, known as Kikuchi effects, may also be a source of valuable information on the arrangements of atoms near the surface. Typically, for the case of RHEED, Kikuchi features are hidden in the intensity background and researchers cannot easily recognize them. In this paper, it is shown that the visibility of features of this type can be substantially enhanced using computer graphics methods.

2.
Nanotechnology ; 33(45)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35878593

RESUMO

Porous anodic alumina (PAA) photonic crystals with a photonic stop-band (PSB) placed in the mid-infrared (MIR) spectral region represent a promising approach for increasing of gas sensors sensitivity. An onion-like layered distribution of anionic impurities is a hallmark of PAA, and its presence is generally considered to demarcate the boundary between transparent and opaque ranges in the infrared spectral region. Here, we study the effect of annealing in the temperature range of 450 °C-1 100 °C on the structural stability and optical properties in photonic crystals based on PAA fabricated by pulse anodization in oxalic acid. Pulse sequences were selected in a way to obtain photonic crystals of different periodic structures with a PSB located in visible and MIR spectral regions. The first photonic crystal was composed of layers with gradually changing porosity, whereas the second photonic crystal consisted of a sequentially repeated double-layer unit with an abrupt change in porosity. We investigated the response of alumina with rationally designed porosities and different arrangements of porous layers for high-temperature treatment. The microstructure (scanning electron microscopy), phase composition (x-ray diffraction), and optical properties (optical spectroscopy) were analysed to track possible changes after annealing. Both photonic crystals demonstrated an excellent structural stability after 24 h annealing up to 950 °C. At the same time, the evaporation of the anionic impurities from PAA walls caused a shift of the PSB towards the shorter wavelengths. Furthermore, the annealing at 1 100 °C induced a high transparency (up to 90%) of alumina in MIR spectral region. It was shown thus that properly selected electrochemical and annealing conditions enable the fabrication of porous photonic crystals with the high transparency spanning the spectral range up to around 10µm.

3.
Materials (Basel) ; 14(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808430

RESUMO

Numerical study of the influence of pulsed laser deposited TiN thin films' microstructure morphologies on strain heterogeneities during loading was the goal of this research. The investigation was based on the digital material representation (DMR) concept applied to replicate an investigated thin film's microstructure morphology. The physically based pulsed laser deposited model was implemented to recreate characteristic features of a thin film microstructure. The kinetic Monte Carlo (kMC) approach was the basis of the model in the first part of the work. The developed kMC algorithm was used to generate thin film's three-dimensional representation with its columnar morphology. Such a digital model was then validated with the experimental data from metallographic analysis of laboratory deposited TiN(100)/Si. In the second part of the research, the kMC generated DMR model of thin film was incorporated into the finite element (FE) simulation. The 3D film's morphology was discretized with conforming finite element mesh, and then incorporated as a microscale model into the macroscale finite element simulation of nanoindentation test. Such a multiscale model was finally used to evaluate the development of local deformation heterogeneities associated with the underlying microstructure morphology. In this part, the capabilities of the proposed approach were clearly highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...