Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159496, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649008

RESUMO

This work aims to understand better the mechanism of cellular processes accompanying the activation of human T cells and to develop a novel, fast, label-free approach to identify molecular biomarkers for this process. The standard methodology for confirming the activation state of T cells is based on flow cytometry and using antibodies recognizing activation markers. The method provide high specificity detection but may be susceptible to background staining or non-specific secondary antibody reactions. Here, we evaluated the potential of Raman-based molecular imaging in distinguishing non-activated and activated human T cells. Confocal Raman microscopy was performed on T cells followed by chemometrics to obtain comprehensive molecular information, while Stimulated Raman Scattering imaging was used to quickly provide high-resolution images of selected cellular components of activated and non-activated cells. For the first time, carotenoids, lipids, and proteins were shown to be important biomarkers of T-cell activation. We found that T-cell activation was accompanied by lipid accumulation and loss of carotenoid content. Our findings on the biochemical, morphological, and structural changes associated with activated mature T cells provide insights into the molecular changes that occur during therapeutic manipulation of the immune response. The methodology for identifying activated T cells is based on a novel imaging method and supervised and unsupervised chemometrics. It unambiguously identifies specific and unique molecular changes without the need for staining, fixation, or any other sample preparation.


Assuntos
Biomarcadores , Carotenoides , Metabolismo dos Lipídeos , Ativação Linfocitária , Análise Espectral Raman , Linfócitos T , Humanos , Carotenoides/metabolismo , Ativação Linfocitária/imunologia , Linfócitos T/metabolismo , Linfócitos T/imunologia , Análise Espectral Raman/métodos , Biomarcadores/metabolismo , Proteínas/metabolismo
2.
Otolaryngol Pol ; 78(1): 36-43, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38332710

RESUMO

<b><br>Introduction:</b> 'Off-label drug use' refers to the administration of drugs for unapproved indications or age groups, a different dosage or other form of administration. Considering the legal issues, there clearly exists a need to implement rules that would regulate the use of pharmaceuticals outside the scope of a marketing authorisation. The brevity and diversity of Polish laws in the field of health care leads to many interpretative doubts associated with particular legal acts.</br> <b><br>Aim:</b> We aimed to present clinical examples from everyday practice of off-label drug use from the medical and legal perspectives, and to support it with relevant legal acts.</br> <b><br>Material and method:</b> Off-label drug use in various otolaryngology subspecialties - otology (mesna), laryngology (bevacizumab, cidofovir and botulinum toxin) and head and neck surgery (botulinum toxin) - are presented and discussed in detail.</br> <b><br>Results:</b> Fourteen Polish legal acts regarding off-label drug use and 4 from EU legislation are commented on. The algorithm of cascade of decision-making processes in off-label drug use is shown.</br> <b><br>Conclusions:</b> Off-label use of medicinal products is not prohibited in Poland or the EU; nevertheless, it is undeniable that the unclear legal situation regarding the use of medicinal products for nonregistered indications creates difficulties. To minimise a doctor's liability risk, obtaining the informed consent from the patient for such treatment is advisable.</br>.


Assuntos
Toxinas Botulínicas , Otolaringologia , Humanos , Uso Off-Label , Polônia , Bevacizumab
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123795, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38184880

RESUMO

Diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin's lymphoma in adults, is a genetically and metabolically heterogeneous group of aggressive malignancies. The complexity of their molecular composition and the variability in clinical presentation make clinical diagnosis and treatment selection a serious challenge. The challenge is therefore to quickly and correctly classify DLBCL cells. In this work, we show that Raman imaging is a tool with high diagnostic potential, providing unique information about the biochemical components of tumor cells and their metabolism. We present models of classification of lymphoma cells based on their Raman spectra. The models automatically and efficiently identify DLBCL cells and assign them to a given cell-of-origin (COO) subtype (activated B cell-like (ABC) or germinal center B cell-like (GCB)) or, respectively, to a comprehensive cluster classification (CCC) subtype (OxPhos/non-OxPhos). In addition, we describe each lymphoma subtype by its unique spectral profile, linking it to biochemical, genetic, or metabolic features.


Assuntos
Linfoma Difuso de Grandes Células B , Adulto , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Centro Germinativo/patologia
4.
Front Genet ; 14: 1235821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799139

RESUMO

Although obesity in the domestic dog (Canis lupus familiaris) is known to decrease well-being and shorten lifespan, the genetic risk variants associated with canine obesity remain largely unknown. In our study, which focused on the obesity-prone Labrador Retriever breed, we conducted a genome-wide analysis to identify structural variants linked to body weight and obesity. Obesity status was based on a 5-point body condition score (BCS) and the obese dog group included all dogs with a BCS of 5, along with dogs with the highest body weight within the BCS 4 group. Data from whole-gene sequencing of fifty dogs, including 28 obese dogs, were bioinformatically analyzed to identify potential structural variants that varied in frequency between obese and healthy dogs. The seven most promising variants were further analyzed by droplet digital PCR in a group of 110 dogs, including 63 obese. Our statistical evidence suggests that common structural mutations in or near six genes, specifically ALPL, KCTD8, SGSM1, SLC12A6, RYR3, and VPS26C, may contribute to the variability observed in body weight and body condition scores among Labrador Retriever dogs. These findings emphasize the need for additional research to validate the associations and explore the specific functions of these genes in relation to canine obesity.

5.
Cell Death Dis ; 14(10): 667, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37816710

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin lymphoma in adults, exhibiting highly heterogenous clinical behavior and complex molecular background. In addition to the genetic complexity, different DLBCL subsets exhibit phenotypic features independent of the genetic background. For example, a subset of DLBCLs is distinguished by increased oxidative phosphorylation and unique transcriptional features, including overexpression of certain mitochondrial genes and a molecular chaperone, heat shock protein HSP90α (termed "OxPhos" DLBCLs). In this study, we identified a feed-forward pathogenetic circuit linking HSP90α and SIRT1 in OxPhos DLBCLs. The expression of the inducible HSP90α isoform remains under SIRT1-mediated regulation. SIRT1 knockdown or chemical inhibition reduced HSP90α expression in a mechanism involving HSF1 transcription factor, whereas HSP90 inhibition reduced SIRT1 protein stability, indicating that HSP90 chaperones SIRT1. SIRT1-HSP90α interaction in DLBCL cells was confirmed by co-immunoprecipitation and proximity ligation assay (PLA). The number of SIRT1-HSP90α complexes in PLA was significantly higher in OxPhos- dependent than -independent cells. Importantly, SIRT1-HSP90α interactions in OxPhos DLBCLs markedly increased in mitosis, suggesting a specific role of the complex during this cell cycle phase. RNAi-mediated and chemical inhibition of SIRT1 and/or HSP90 significantly increased the number of cells with chromosome segregation errors (multipolar spindle formation, anaphase bridges and lagging chromosomes). Finally, chemical SIRT1 inhibitors induced dose-dependent cytotoxicity in OxPhos-dependent DLBCL cell lines and synergized with the HSP90 inhibitor. Taken together, our findings define a new OxPhos-DLBCL-specific pathogenetic loop involving SIRT1 and HSP90α that regulates chromosome dynamics during mitosis and may be exploited therapeutically.


Assuntos
Segregação de Cromossomos , Proteínas de Choque Térmico HSP90 , Linfoma Difuso de Grandes Células B , Sirtuína 1 , Humanos , Proteínas de Choque Térmico HSP90/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Chaperonas Moleculares/metabolismo , Sirtuína 1/metabolismo
6.
Vet Sci ; 10(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37368776

RESUMO

Obesity and overweight are common conditions in dogs, but individual susceptibility varies with numerous risk factors, including diet, age, sterilization, and gender. In addition to environmental and biological factors, genetic and epigenetic risk factors can influence predisposition to canine obesity, however, they remain unknown. Labrador Retrievers are one of the breeds that are prone to obesity. The purpose of this study was to analyse 41 canine orthologues of human genes linked to monogenic obesity in humans to identify genes associated with body weight in Labrador Retriever dogs. We analysed 11,520 variants from 50 dogs using a linear mixed model with sex, age, and sterilization as covariates and population structure as a random effect. Estimates obtained from the model were subjected to a maxT permutation procedure to adjust p-values for FWER < 0.05. Only the ADCY3 gene showed statistically significant association: TA>T deletion located at 17:19,222,459 in 1/20 intron (per allele effect of 5.56 kg, SE 0.018, p-value = 5.83 × 10-5, TA/TA: 11 dogs; TA/T: 32 dogs; T/T: 7 dogs). Mutations in the ADCY3 gene have already been associated with obesity in mice and humans, making it a promising marker for canine obesity research. Our results provide further evidence that the genetic makeup of obesity in Labrador Retriever dogs contains genes with large effect sizes.

7.
Anim Genet ; 54(2): 166-176, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36437751

RESUMO

Disorders of sex development (DSDs) are discrepancies between sex chromosomes and phenotypical sex. Quite common forms of DSD in canine populations include testicular and ovotesticular XX DSDs with a normal set of sex chromosomes. The objective of this study was to identify genes and putative harmful variants for canine XX DSDs. I have reanalyzed data from the whole-genome sequencing of 11 XX DSD French Bulldogs and six XX DSD American Staffordshire Terriers. Identity-by-descent analysis revealed cryptic relatedness in affected French Bulldogs. Causative genes were sought in chromosomal segments shared identical-by-descent by close relatives. In French Bulldogs, the reanalysis identified 19 regions of importance with a total length of just 65.9 Mb. Variant filtering within the regions implicated AKAP2, PIWIL1, POLR3A and SH2D4B as genes that may be involved in individual cases of testicular and ovotesticular XX DSD in French Bulldogs and American Staffordshire Terriers.


Assuntos
Transtornos do Desenvolvimento Sexual , Doenças do Cão , Transtornos Ovotesticulares do Desenvolvimento Sexual , Masculino , Cães , Animais , Transtornos Ovotesticulares do Desenvolvimento Sexual/genética , Transtornos Ovotesticulares do Desenvolvimento Sexual/veterinária , Testículo , Cromossomos Sexuais , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/veterinária , Doenças do Cão/genética
8.
Front Oncol ; 12: 1048741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387080

RESUMO

Background: TRAIL (TNF-related apoptosis inducing ligand) exhibits selective proapoptotic activity in multiple tumor types, while sparing normal cells. This selectivity makes TRAIL an attractive therapeutic candidate. However, despite encouraging activity in preclinical models, clinical trials with TRAIL mimetics/death receptor agonists demonstrated insufficient activity, largely due to emerging resistance to these agents. Herein, we investigated the cytotoxic activity of a novel, TRAIL-based chimeric protein AD-O51.4 combining TRAIL and VEGFA-derived peptide sequences, in hematological malignancies. We characterize key molecular mechanisms leading to resistance and propose rational pharmacological combinations sensitizing cells to AD-O51.4. Methods: Sensitivity of DLBCL, classical Hodgkin lymphoma, (cHL), Burkitt lymphoma (BL) and acute myeloid leukemia (AML) to AD-O51.4 was assessed in vitro with MTS assay and apoptosis tests (Annexin V/PI staining). Markers of apoptosis were assessed using immunoblotting, flow cytometry or fluorogenic caspase cleavage assays. Resistant cell lines were obtained by incubation with increasing doses of AD-O51.4. Transcriptomic analyses were performed by RNA sequencing. Sensitizing effects of selected pathway modulators (BCL2, dynamin and HDAC inhibitors) were assessed using MTS/apoptosis assays. Results: AD-O51.4 exhibited low-nanomolar cytotoxic activity in DLBCL cells, but not in other lymphoid or AML cell lines. AD-O51.4 induced death-receptor (DR) mediated, caspase-dependent apoptosis in sensitive DLBCL cells, but not in primary resistant cells. The presence of DRs and caspase 8 in cancer cells was crucial for AD-O51.4-induced apoptosis. To understand the potential mechanisms of resistance in an unbiased way, we engineered AD-O51.4-resistant cells and evaluated resistance-associated transcriptomic changes. Resistant cells exhibited changes in the expression of multiple genes and pathways associated with apoptosis, endocytosis and HDAC-dependent epigenetic reprogramming, suggesting potential therapeutic strategies of sensitization to AD-O51.4. In subsequent analyses, we demonstrated that HDAC inhibitors, BCL2 inhibitors and endocytosis/dynamin inhibitors sensitized primary resistant DLBCL cells to AD-O51.4. Conclusions: Taken together, we identified rational pharmacologic strategies sensitizing cells to AD-O51.4, including BCL2, histone deacetylase inhibitors and dynamin modulators. Since AD-O51.4 exhibits favorable pharmacokinetics and an acceptable safety profile, its further clinical development is warranted. Identification of resistance mechanisms in a clinical setting might indicate a personalized pharmacological approach to override the resistance.

9.
Genomics ; 114(4): 110389, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597501

RESUMO

Disorders of sex development (DSDs) are congenital malformations defined as discrepancies between sex chromosomes and phenotypical sex. Testicular or ovotesticular XX DSDs are frequently observed in female dogs, while monogenic XY DSDs are less frequent. Here, we applied whole genome sequencing (WGS) to search for causative mutations in XX DSD females in French Bulldogs (FB) and American Staffordshire Terries (AST) and in XY DSD Yorkshire Terries (YT). The WGS results were validated by Sanger sequencing and ddPCR. It was shown that a missense SNP of the PADI6 gene, is significantly associated with the XX DSD (SRY-negative) phenotype in AST (P = 0.0051) and FB (P = 0.0306). On the contrary, we did not find any associated variant with XY DSD in YTs. Our study suggests that the genetic background of the XX DSD may be more complex and breed-specific.


Assuntos
Transtornos do Desenvolvimento Sexual , Transtornos Ovotesticulares do Desenvolvimento Sexual , Animais , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/veterinária , Cães , Feminino , Transtornos Ovotesticulares do Desenvolvimento Sexual/genética , Polimorfismo Genético , Desenvolvimento Sexual , Sequenciamento Completo do Genoma
10.
J Appl Genet ; 63(3): 557-561, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35471496

RESUMO

Canine polygenic obesity can be influenced by relatively recent mutations with large effects. We determined whether, as with monogenic diseases, long autozygous tracts may be disproportionately likely to harbor detrimental variants for additive polygenic obesity in Labrador retriever dogs. Both our detection of runs of homozygosity (ROH) and our preliminary association study were based on whole-genome sequencing of 28 obese and 22 healthy dogs. We detected and analyzed the distribution of 19,655 ROH. We observed 237 and 98 ROH-harboring genotypes associated with obesity and increased body mass, respectively. We found no evidence that long ROH tend to harbor genotypes linked to obesity or increased body weight, and we concluded that data on ROH overlapping GWAS signals for canine obesity are unlikely to help prioritize candidate genes for validation studies.


Assuntos
Obesidade , Polimorfismo de Nucleotídeo Único , Animais , Cães , Genótipo , Homozigoto , Endogamia , Obesidade/genética , Obesidade/veterinária , Sequenciamento Completo do Genoma
11.
Cancer Res ; 81(23): 6029-6043, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34625423

RESUMO

The family of PIM serine/threonine kinases includes three highly conserved oncogenes, PIM1, PIM2, and PIM3, which regulate multiple prosurvival pathways and cooperate with other oncogenes such as MYC. Recent genomic CRISPR-Cas9 screens further highlighted oncogenic functions of PIMs in diffuse large B-cell lymphoma (DLBCL) cells, justifying the development of small-molecule PIM inhibitors and therapeutic targeting of PIM kinases in lymphomas. However, detailed consequences of PIM inhibition in DLBCL remain undefined. Using chemical and genetic PIM blockade, we comprehensively characterized PIM kinase-associated prosurvival functions in DLBCL and the mechanisms of PIM inhibition-induced toxicity. Treatment of DLBCL cells with SEL24/MEN1703, a pan-PIM inhibitor in clinical development, decreased BAD phosphorylation and cap-dependent protein translation, reduced MCL1 expression, and induced apoptosis. PIM kinases were tightly coexpressed with MYC in diagnostic DLBCL biopsies, and PIM inhibition in cell lines and patient-derived primary lymphoma cells decreased MYC levels as well as expression of multiple MYC-dependent genes, including PLK1. Chemical and genetic PIM inhibition upregulated surface CD20 levels in an MYC-dependent fashion. Consistently, MEN1703 and other clinically available pan-PIM inhibitors synergized with the anti-CD20 monoclonal antibody rituximab in vitro, increasing complement-dependent cytotoxicity and antibody-mediated phagocytosis. Combined treatment with PIM inhibitor and rituximab suppressed tumor growth in lymphoma xenografts more efficiently than either drug alone. Taken together, these results show that targeting PIM in DLBCL exhibits pleiotropic effects that combine direct cytotoxicity with potentiated susceptibility to anti-CD20 antibodies, justifying further clinical development of such combinatorial strategies. SIGNIFICANCE: These findings demonstrate that inhibition of PIM induces DLBCL cell death via MYC-dependent and -independent mechanisms and enhances the therapeutic response to anti-CD20 antibodies by increasing CD20 expression.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Rituximab/farmacologia , Animais , Antígenos CD20 , Antineoplásicos Imunológicos/farmacologia , Apoptose , Proliferação de Células , Feminino , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos SCID , Fosforilação , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Am J Pathol ; 191(3): 567-574, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33307035

RESUMO

Primary mediastinal large B-cell lymphoma (PMBL) cells depend on the constitutive activity of NF-κB and STAT transcription factors, which drive expression of multiple molecules essential for their survival. In a molecularly related B-cell malignant tumor (classic Hodgkin lymphoma), tumor Reed-Sternberg cells overexpress oncogenic (proviral integration site for Moloney murine leukemia virus (PIM) 1, 2, and 3 kinases in a NF-κB- and STAT-dependent manner and PIMs enhance survival and expression of immunomodulatory molecules. Given the multiple overlapping characteristics of Reed-Sternberg and PMBL cells, we hypothesized that PIM kinases may be overexpressed in PMBL and involved in PMBL pathogenesis. The expression of PIM kinases in PMBL diagnostic biopsy specimens was assessed and their role in survival and immune escape of the tumor cells was determined. PIMs were abundantly expressed in primary tumors and PMBL cell lines. Inhibition of PIM kinases was toxic to PMBL cells, attenuated protein translation, and down-regulated NF-κB- and STAT-dependent transcription of prosurvival factors BCL2A1, BCL2L1, and FCER2. Furthermore, PIM inhibition decreased expression of molecules engaged in shaping the immunosuppressive microenvironment, including programmed death ligand 1/2 and chemokine (C-C motif) ligand 17. Taken together, our data indicate that PIMs support PMBL cell survival and immune escape and identify PIMs as promising therapeutic targets for PMBL.


Assuntos
Janus Quinase 1/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Neoplasias do Mediastino/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Fator de Transcrição STAT3/metabolismo , Evasão Tumoral , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Janus Quinase 1/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/metabolismo , Neoplasias do Mediastino/imunologia , Neoplasias do Mediastino/metabolismo , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , Fator de Transcrição STAT3/genética , Células Tumorais Cultivadas
13.
Cell Death Dis ; 11(11): 956, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159047

RESUMO

Spleen tyrosine kinase (SYK) is an important oncogene and signaling mediator activated by cell surface receptors crucial for acute myeloid leukemia (AML) maintenance and progression. Genetic or pharmacologic inhibition of SYK in AML cells leads to increased differentiation, reduced proliferation, and cellular apoptosis. Herein, we addressed the consequences of SYK inhibition to leukemia stem-cell (LSC) function and assessed SYK-associated pathways in AML cell biology. Using gain-of-function MEK kinase mutant and constitutively active STAT5A, we demonstrate that R406, the active metabolite of a small-molecule SYK inhibitor fostamatinib, induces differentiation and blocks clonogenic potential of AML cells through the MEK/ERK1/2 pathway and STAT5A transcription factor, respectively. Pharmacological inhibition of SYK with R406 reduced LSC compartment defined as CD34+CD38-CD123+ and CD34+CD38-CD25+ in vitro, and decreased viability of LSCs identified by a low abundance of reactive oxygen species. Primary leukemic blasts treated ex vivo with R406 exhibited lower engraftment potential when xenotransplanted to immunodeficient NSG/J mice. Mechanistically, these effects are mediated by disturbed mitochondrial biogenesis and suppression of oxidative metabolism (OXPHOS) in LSCs. These mechanisms appear to be partially dependent on inhibition of STAT5 and its target gene MYC, a well-defined inducer of mitochondrial biogenesis. In addition, inhibition of SYK increases the sensitivity of LSCs to cytarabine (AraC), a standard of AML induction therapy. Taken together, our findings indicate that SYK fosters OXPHOS and participates in metabolic reprogramming of AML LSCs in a mechanism that at least partially involves STAT5, and that SYK inhibition targets LSCs in AML. Since active SYK is expressed in a majority of AML patients and confers inferior prognosis, the combination of SYK inhibitors with standard chemotherapeutics such as AraC constitutes a new therapeutic modality that should be evaluated in future clinical trials.


Assuntos
Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Fosforilação Oxidativa , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT5/antagonistas & inibidores , Quinase Syk/antagonistas & inibidores , Proteínas Supressoras de Tumor/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Respiração Celular , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Estresse Oxidativo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Quinase Syk/genética , Quinase Syk/metabolismo , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Exp Hematol ; 88: 56-67.e2, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32702393

RESUMO

MicroRNA-155 (MiR-155) is involved in normal B-cell development and lymphomagenesis, affecting cell differentiation, motility, and intracellular signaling. In this study, we searched for new targets of MiR-155 potentially involved in deregulation of the B-cell receptor pathway (BCR) in diffuse large B-cell lymphoma (DLBCL). We report that MiR-155 represses DEPTOR (an mTOR phosphatase) and c-CBL (SYK ubiquitin E3 ligase) through direct 3'-untranslated region interactions. In primary DLBCLs, MiR-155 exhibits a reciprocal expression pattern with DEPTOR and c-CBL. Inhibition of MiR-155 decreased expression of NFκB target genes and sensitized DLBCL cells to ibrutinib, confirming the role of MiR-155 in the modulation of BCR signaling. As the function of DEPTOR in DLBCLs has never been addressed, we first evaluated its expression in a series of 76 newly diagnosed DLBCL patients. DEPTOR protein expression was markedly lower in more aggressive nongerminal center-like (non-GCB) DLBCLs than in GCB tumors. In cell line models, inhibition of DEPTOR expression favored the migration of DLBCL cells toward the CXCL12 gradient. Finally, loss or gain of DEPTOR modulated the expression of specific pro-inflammatory cytokines and chemokines. We thus identified DEPTOR as a new MiR-155 target that is differentially expressed between GCB- and non-GCB-type DLBCLs and modulates cell migration and cytokine expression in DLBCL cells.


Assuntos
Movimento Celular , Citocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Citocinas/genética , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , RNA Neoplásico/genética
15.
Mol Oncol ; 14(8): 1817-1832, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32330348

RESUMO

Although melanoma is considered one of the most immunogenic malignancies, spontaneous T-cell responses to melanoma antigens are ineffective due to tumor cell-intrinsic or microenvironment-driven immune evasion mechanisms. For example, oncogenic BRAF V600E mutation in melanoma cells fosters tumor immune escape by modulating cell immunogenicity and microenvironment composition. BRAF inhibition has been shown to increase melanoma cell immunogenicity, but these effects are transient and long-term responses are uncommon. For these reasons, we aimed to further characterize the role of BRAF-V600E mutation in the modulation of PD-L1, a known immunoregulatory molecule, and galectin-1 (Gal-1), a potent immunoregulatory lectin involved in melanoma immune privilege. We report herein that vemurafenib downregulates IFN-γ-induced PD-L1 expression by interfering with STAT1 activity and by decreasing PD-L1 protein translation. Surprisingly, melanoma cells exposed to vemurafenib expressed higher levels of Gal-1. In coculture experiments, A375 melanoma cells pretreated with vemurafenib induced apoptosis of interacting Jurkat T cells, whereas genetic inhibition of Gal-1 in these cells restored the viability of cocultured T lymphocytes, indicating that Gal-1 contributes to tumor immune escape. Importantly, Gal-1 plasma concentration increased in patients progressing on BRAF/MEK inhibitor treatment, but remained stable in responding patients. Taken together, these results suggest a two-faceted nature of BRAF inhibition-associated immunomodulatory effects: an early immunostimulatory activity, mediated at least in part by decreased PD-L1 expression, and a delayed immunosuppressive effect associated with Gal-1 induction. Importantly, our observations suggest that Gal-1 might be utilized as a potential biomarker and a putative therapeutic target in melanoma patients.


Assuntos
Antígeno B7-H1/metabolismo , Galectina 1/genética , Imunomodulação , Interferon gama/metabolismo , Melanoma/imunologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Regulação para Cima/genética , Apoptose , Linhagem Celular Tumoral , Galectina 1/sangue , Humanos , Imunomodulação/efeitos dos fármacos , Melanoma/sangue , Melanoma/tratamento farmacológico , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fator de Transcrição STAT1/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico
16.
Cancers (Basel) ; 12(3)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138178

RESUMO

Burkitt lymphoma (BL) is a rapidly growing tumor, characterized by high anabolic requirements. The MYC oncogene plays a central role in the pathogenesis of this malignancy, controlling genes involved in apoptosis, proliferation, and cellular metabolism. Serine biosynthesis pathway (SBP) couples glycolysis to folate and methionine cycles, supporting biosynthesis of certain amino acids, nucleotides, glutathione, and a methyl group donor, S-adenosylmethionine (SAM). We report that BLs overexpress SBP enzymes, phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1). Both genes are controlled by the MYC-dependent ATF4 transcription factor. Genetic ablation of PHGDH/PSAT1 or chemical PHGDH inhibition with NCT-503 decreased BL cell lines proliferation and clonogenicity. NCT-503 reduced glutathione level, increased reactive oxygen species abundance, and induced apoptosis. Consistent with the role of SAM as a methyl donor, NCT-503 decreased DNA and histone methylation, and led to the re-expression of ID4, KLF4, CDKN2B and TXNIP tumor suppressors. High H3K27me3 level is known to repress the MYC negative regulator miR-494. NCT-503 decreased H3K27me3 abundance, increased the miR-494 level, and reduced the expression of MYC and MYC-dependent histone methyltransferase, EZH2. Surprisingly, chemical/genetic disruption of SBP did not delay BL and breast cancer xenografts growth, suggesting the existence of mechanisms compensating the PHGDH/PSAT1 absence in vivo.

18.
PLoS One ; 14(6): e0218565, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31220175

RESUMO

Testicular or ovotesticular disorders of sex development (DSD) in individuals with female karyotype (XX) lacking the SRY gene has been observed in several mammalian species, including dogs. A genetic background for this abnormality has been extensively sought, and the region harboring the SOX9 gene has often been considered key in canine DSD. Three types of polymorphism have been studied in this region to date: a) copy number variation (CNV) in a region about 400 kb upstream of SOX9, named CNVR1; b) duplication of SOX9; and c) insertion of a single G-nucleotide (rs852549625) approximately 2.2 Mb upstream of SOX9. The aim of this study was thus to comprehensively analyze these polymorphisms in a large multibreed case-control cohort containing 45 XX DSD dogs, representing 23 breeds. The control set contained 57 fertile females. Droplet digital PCR (ddPCR) was used to study CNVR1 and the duplication of SOX9. Fluorescent in situ hybridization (FISH) was used to visualize copy numbers on a cellular level. The Sanger sequencing approach was performed to analyze the region harboring the G-insertion. We confirmed that CNVR1 is highly polymorphic and that copy numbers varied between 0 and 7 in the case and control cohorts. Interestingly, the number of copies was significantly higher (P = 0.038) in XX DSD dogs (mean = 2.7) than in the control females (mean = 2.0) but not in all studied breeds. Duplication of the SOX9 gene was noted only in a single XX DSD dog (an American Bully), which had three copies of SOX9. Distribution of the G-nucleotide insertion was similar in the XX DSD (frequency 0.20) and control (frequency 0.14) cohorts. Concluding, our study showed that CNVR1, located upstream of SOX9, is associated with the XX DSD phenotype, though in a breed-specific manner. Duplication of the SOX9 gene is a rare cause of this disorder in dogs. Moreover, we did not observe any association of G-insertion with the DSD phenotype. We assume that the genetic background of XX DSD can be different in certain breeds.


Assuntos
Variações do Número de Cópias de DNA , Transtornos do Desenvolvimento Sexual/genética , Doenças do Cão/genética , Fatores de Transcrição SOX9/genética , Animais , Estudos de Casos e Controles , Cães , Feminino , Cromossomo X/genética
19.
J Cell Mol Med ; 22(7): 3548-3559, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29665227

RESUMO

Lymph node microenvironment provides chronic lymphocytic leukaemia (CLL) cells with signals promoting their survival and granting resistance to chemotherapeutics. CLL cells overexpress PIM kinases, which regulate apoptosis, cell cycle and migration. We demonstrate that BCR crosslinking, CD40 stimulation, and coculture with stromal cells increases PIMs expression in CLL cells, indicating microenvironment-dependent PIMs regulation. PIM1 and PIM2 expression at diagnosis was higher in patients with advanced disease (Binet C vs. Binet A/B) and in those, who progressed after first-line treatment. In primary CLL cells, inhibition of PIM kinases with a pan-PIM inhibitor, SEL24-B489, decreased PIM-specific substrate phosphorylation and induced dose-dependent apoptosis in leukaemic, but not in normal B cells. Cytotoxicity of SEL24-B489 was similar in TP53-mutant and TP53 wild-type cells. Finally, inhibition of PIM kinases decreased CXCR4-mediated cell chemotaxis in two related mechanisms-by decreasing CXCR4 phosphorylation and surface expression, and by limiting CXCR4-triggered mTOR pathway activity. Importantly, PIM and mTOR inhibitors similarly impaired migration, indicating that CXCL12-triggered mTOR is required for CLL cell chemotaxis. Given the microenvironment-modulated PIM expression, their pro-survival function and a role of PIMs in CXCR4-induced migration, inhibition of these kinases might override microenvironmental protection and be an attractive therapeutic strategy in this disease.


Assuntos
Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Receptores CXCR4/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Movimento Celular/efeitos dos fármacos , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/genética , Células Tumorais Cultivadas , Microambiente Tumoral
20.
Oncotarget ; 9(24): 16917-16931, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29682194

RESUMO

Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is one of the most common genetic lesions in acute myeloid leukemia patients (AML). Although FLT3 tyrosine kinase inhibitors initially exhibit clinical activity, resistance to treatment inevitably occurs within months. PIM kinases are thought to be major drivers of the resistance phenotype and their inhibition in relapsed samples restores cell sensitivity to FLT3 inhibitors. Thus, simultaneous PIM and FLT3 inhibition represents a promising strategy in AML therapy. For such reasons, we have developed SEL24-B489 - a potent, dual PIM and FLT3-ITD inhibitor. SEL24-B489 exhibited significantly broader on-target activity in AML cell lines and primary AML blasts than selective FLT3-ITD or PIM inhibitors. SEL24-B489 also demonstrated marked activity in cells bearing FLT3 tyrosine kinase domain (TKD) mutations that lead to FLT3 inhibitor resistance. Moreover, SEL24-B489 inhibited the growth of a broad panel of AML cell lines in xenograft models with a clear pharmacodynamic-pharmacokinetic relationship. Taken together, our data highlight the unique dual activity of the SEL24-B489 that abrogates the activity of signaling circuits involved in proliferation, inhibition of apoptosis and protein translation/metabolism. These results underscore the therapeutic potential of the dual PIM/FLT3-ITD inhibitor for the treatment of AML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...