Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887082

RESUMO

The rise of two-dimensional (2D) materials has provided a confined geometry and yielded methods for guiding electrons at the nanoscale level. 2D material-enabled electronic devices can interact and transduce the subtle charge perturbation and permit significant advancement in molecule discrimination technology with high accuracy, sensitivity, and specificity, leaving a significant impact on disease diagnosis and health monitoring. However, high-performance biosensors with scalable fabrication ability and simple protocols have yet to be fully realized due to the challenges in wafer-scale 2D film synthesis and integration with electronics. Here, we propose a molybdenum oxide (MoOx)-interdigitated electrode (IDE)-based label-free biosensing chip, which stands out for its wafer-scale dimension, tunability, ease of integration and compatibility with the complementary metal-oxide-semiconductor (CMOS) fabrication. The device surface is biofunctionalized with monoclonal anti-carcinoembryonic antigen antibodies (anti-CEA) via the linkage agent (3-aminopropyl)triethoxysilane (APTES) for carcinoembryonic antigen (CEA) detection and is characterized step-by-step to reveal the working mechanism. A wide range and real-time response of the CEA concentration from 0.1 to 100 ng mL-1 and a low limit of detection (LOD) of 0.015 ng mL-1 were achieved, meeting the clinical requirements for cancer diagnosis and prognosis in serum. The MoOx-IDE biosensor also demonstrates strong surface affinity towards molecules and high selectivity using L-cysteine (L-Cys), glycine (Gly), glucose (Glu), bovine serum albumin (BSA), and immunoglobulin G (IgG). This study showcases a simple, scalable, and low-cost strategy to create a nanoelectronic biosensing platform to achieve high-performance cancer biomarker discrimination capabilities.

2.
Res Pract Thromb Haemost ; 7(1): 100037, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36846647

RESUMO

Background: Blood platelets have evolved a complex mechanotransduction machinery to rapidly respond to hemodynamic conditions. A variety of microfluidic flow-based approaches have been developed to explore platelet mechanotransduction; however, these experimental models primarily focus on the effects of increased wall shear stress on platelet adhesion events and do not consider the critical effects of extensional strain on platelet activation in free flow. Objectives: We report the development and application of a hyperbolic microfluidic assay that allows for investigation of platelet mechanotransduction under quasi-homogenous extensional strain rates in the absence of surface adhesions. Methods: Using a combined computational fluid dynamic and experimental microfluidic approach, we explore 5 extensional strain regimes (geometries) and their effect on platelet calcium signal transduction. Results: We demonstrate that in the absence of canonical adhesion, receptor engagement platelets are highly sensitive to both initial increase and subsequent decrease in extensional strain rates within the range of 747 to 3319/s. Furthermore, we demonstrate that platelets rapidly respond to the rate of change in extensional strain and define a threshold of ≥7.33 × 106/s/m, with an optimal range of 9.21 × 107 to 1.32 × 108/s/m. In addition, we demonstrate a key role of both the actin-based cytoskeleton and annular microtubules in the modulation of extensional strain-mediated platelet mechanotransduction. Conclusion: This method opens a window onto a novel platelet signal transduction mechanism and may have potential diagnostic utility in the identification of patients who are prone to thromboembolic complications associated with high-grade arterial stenosis or are on mechanical circulatory support systems, for which the extensional strain rate is a predominant hemodynamic driver.

3.
Front Immunol ; 13: 918254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466914

RESUMO

High Tumor Necrosis Factor Receptor 2 (TNFR2) expression is characteristic of diverse malignant cells during tumorigenesis. The protein is also expressed by many immunosuppressive cells during cancer development, allowing cancer immune escape. A growing body of evidence further suggests a correlation between the circulating form of this protein and cancer development. Here we conducted a systematic meta-analysis of cancer studies published up until 1st October 2022, in which the circulating soluble TNFR2 (sTNFR2) concentrations in patients with cancers were recorded and their association with cancer risk was assessed. Of the 14,615 identified articles, 44 studies provided data on the correlation between cancer risk and the level of circulating sTNFR2. The pooled means comparison showed a consistently significant increase in the levels of sTNFR2 in diverse cancers when compared to healthy controls. These included colorectal cancer, ovarian cancer, breast cancer, non-Hodgkin's lymphoma, Hodgkin's lymphoma, lung cancer, hepatocarcinoma, and glioblastoma. In a random-effect meta-analysis, the cancer-specific odd ratios (OR) showed significant correlations between increased circulating sTNFR2 levels and the risk of colorectal cancer, non-Hodgkin's lymphoma, and hepatocarcinoma at 1.59 (95% CI:1.20-2.11), 1.98 (95% CI:1.49-2.64) and 4.32 (95% CI:2.25-8.31) respectively. The overall result showed an association between circulating levels of sTNFR2 and the risk of developing cancer at 1.76 (95% CI:1.53-2.02). This meta-analysis supports sTNFR2 as a potential diagnostic biomarker for cancer, albeit with different predictive strengths for different cancer types. This is consistent with a potential key role for TNFR2 involvement in cancer development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Colorretais , Glioblastoma , Neoplasias Hepáticas , Linfoma não Hodgkin , Neoplasias Ovarianas , Feminino , Humanos , Receptores Tipo II do Fator de Necrose Tumoral , Biomarcadores Tumorais
4.
BMC Biol ; 20(1): 73, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331224

RESUMO

BACKGROUND: Supraphysiological hemodynamics are a recognized driver of platelet activation and thrombosis at high-grade stenosis and in blood contacting circulatory support devices. However, whether platelets mechano-sense hemodynamic parameters directly in free flow (in the absence of adhesion receptor engagement), the specific hemodynamic parameters at play, the precise timing of activation, and the signaling mechanism(s) involved remain poorly elucidated. RESULTS: Using a generalized Newtonian computational model in combination with microfluidic models of flow acceleration and quasi-homogenous extensional strain, we demonstrate that platelets directly mechano-sense acute changes in free-flow extensional strain independent of shear strain, platelet amplification loops, von Willebrand factor, and canonical adhesion receptor engagement. We define an extensional strain sensing "mechanosome" in platelets involving cooperative Ca2+ signaling driven by the mechanosensitive channel Piezo1 (as the primary strain sensor) and the fast ATP gated channel P2X1 (as the secondary signal amplifier). We demonstrate that type II PI3 kinase C2α activity (acting as a "clutch") couples extensional strain to the mechanosome. CONCLUSIONS: Our findings suggest that platelets are adapted to rapidly respond to supraphysiological extensional strain dynamics, rather than the peak magnitude of imposed wall shear stress. In the context of overall platelet activation and thrombosis, we posit that "extensional strain sensing" acts as a priming mechanism in response to threshold levels of extensional strain allowing platelets to form downstream adhesive interactions more rapidly under the limiting effects of supraphysiological hemodynamics.


Assuntos
Ativação Plaquetária , Trombose , Plaquetas/metabolismo , Hemodinâmica , Humanos , Canais Iônicos , Estresse Mecânico , Fator de von Willebrand/metabolismo
5.
Biosens Bioelectron ; 198: 113814, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823964

RESUMO

The detection of cancer cells at the single-cell level enables many novel functionalities such as next-generation cancer prognosis and accurate cellular analysis. While surface-enhanced Raman spectroscopy (SERS) has been widely considered as an effective tool in a low-cost and label-free manner, however, it is challenging to discriminate single cancer cells with an accuracy above 90% mainly due to the poor biocompatibility of the noble-metal-based SERS agents. Here, we report a dual-functional nanoprobe based on dopant-driven plasmonic oxides, demonstrating a maximum accuracy above 90% in distinguishing single THP-1 cell from peripheral blood mononuclear cell (PBMC) and human embryonic kidney (HEK) 293 from human macrophage cell line U937 based on their SERS patterns. Furthermore, this nanoprobe can be triggered by the bio-redox response from individual cells towards stimuli, empowering another complementary colorimetric cell detection, approximately achieving the unity discrimination accuracy at a single-cell level. Our strategy could potentially enable the future accurate and low-cost detection of cancer cells from mixed cell samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias , Células HEK293 , Humanos , Leucócitos Mononucleares , Neoplasias/diagnóstico , Óxidos , Análise Espectral Raman
6.
Semin Thromb Hemost ; 46(5): 622-636, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32604421

RESUMO

The manipulation of blood within in vitro environments presents a persistent challenge, due to the highly reactive nature of blood, and its multifaceted response to material contact, changes in environmental conditions, and stimulation during handling. Microfluidic Lab-on-Chip systems offer the promise of robust point-of-care diagnostic tools and sophisticated research platforms. The capacity for precise control of environmental and experimental conditions afforded by microfluidic technologies presents unique opportunities that are particularly relevant to research and clinical applications requiring the controlled manipulation of blood. A critical bottleneck impeding the translation of existing Lab-on-Chip technology from laboratory bench to the clinic is the ability to reliably handle relatively small blood samples without negatively impacting blood composition or function. This review explores design considerations critical to the development of microfluidic systems intended for use with whole blood from an engineering perspective. Material hemocompatibility is briefly explored, encompassing common microfluidic device materials, as well as surface modification strategies intended to improve hemocompatibility. Operational hemocompatibility, including shear-induced effects, temperature dependence, and gas interactions are explored, microfluidic sample preparation methodologies are introduced, as well as current techniques for on-chip manipulation of the whole blood. Finally, methods of assessing hemocompatibility are briefly introduced, with an emphasis on primary hemostasis and platelet function.


Assuntos
Materiais Biocompatíveis/normas , Microfluídica/métodos , Humanos
7.
Opt Express ; 27(15): 21532-21545, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510229

RESUMO

In this contribution, we demonstrate how an optical frequency comb can be used to enhance the functionality of an integrated photonic biosensor platform. We show that if an optical frequency comb is used to sample the spectral response of a Mach-Zehnder interferometer and if the line spacing is arranged to sample the periodic response at 120° intervals, then it is possible to combine these samples into a single measurement of the interferometer phase. This phase measurement approach is accurate, independent of the bias of the interferometer and robust against intensity fluctuations that are common to each of the comb lines. We demonstrate this approach with a simple silicon photonic interferometric refractive index sensor and show that the benefits of our approach can be obtained without degrading the lower limit of detection of 3.70×10-7 RIU.

8.
Anal Chem ; 91(16): 10830-10839, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31343155

RESUMO

There is a need for scalable automated lab-on-chip systems incorporating precise hemodynamic control that can be applied to high-content screening of new more efficacious antiplatelet therapies. This paper reports on the development and characterization of a novel active micropump-mixer microfluidic to address this need. Using a novel reciprocating elastomeric micropump design, we take advantage of the flexible structural and actuation properties of this framework to manage the hemodynamics for on-chip platelet thrombosis assay on type 1 fibrillar collagen, using whole blood. By characterizing and harnessing the complex three-dimensional hemodynamics of the micropump operation in conjunction with a microvalve controlled reagent injection system we demonstrate that this prototype can act as a real-time assay of antiplatelet drug pharmacokinetics. In a proof-of-concept preclinical application, we utilize this system to investigate the way in which rapid dosing of human whole blood with isoform selective inhibitors of phosphatidylinositol 3-kinase dose dependently modulate platelet thrombus dynamics. This modular system exhibits utility as an automated multiplexable assay system with applications to high-content chemical library screening of new antiplatelet therapies.


Assuntos
Indometacina/sangue , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Inibidores da Agregação Plaquetária/sangue , Plaquetas/efeitos dos fármacos , Hemodinâmica , Humanos , Indometacina/farmacocinética , Técnicas Analíticas Microfluídicas/instrumentação , Inibidores da Agregação Plaquetária/farmacocinética
9.
Lab Chip ; 18(12): 1778-1792, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29789838

RESUMO

This paper reports on the parameters that determine the haemocompatibility of elastomeric microvalves for blood handling in microfluidic systems. Using a comprehensive investigation of blood function, we describe a hierarchy of haemocompatibility as a function of microvalve geometry and identify a "normally-closed" v-gate pneumatic microvalve design that minimally affects blood plasma fibrinogen and von Willebrand factor composition, minimises effects on erythrocyte structure and function, and limits effects on platelet activation and aggregation, while facilitating rapid switching control for blood sample delivery. We propose that the haemodynamic profile of valve gate geometries is a significant determinant of platelet-dependent biofouling and haemocompatibility. Overall our findings suggest that modification of microvalve gate geometry and consequently haemodynamic profile can improve haemocompatibility, while minimising the requirement for chemical or protein modification of microfluidic surfaces. This biological insight and approach may be harnessed to inform future haemocompatible microfluidic valve and component design, and is an advance towards lab-on-chip automation for blood based diagnostic systems.


Assuntos
Transfusão de Sangue/instrumentação , Elastômeros/química , Técnicas Analíticas Microfluídicas/instrumentação , Plaquetas/citologia , Plaquetas/fisiologia , Desenho de Equipamento , Eritrócitos/citologia , Eritrócitos/fisiologia , Humanos , Teste de Materiais , Estresse Mecânico
10.
Small ; 14(26): e1800698, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29806234

RESUMO

Single-cell analysis of cytokine secretion is essential to understand the heterogeneity of cellular functionalities and develop novel therapies for multiple diseases. Unraveling the dynamic secretion process at single-cell resolution reveals the real-time functional status of individual cells. Fluorescent and colorimetric-based methodologies require tedious molecular labeling that brings inevitable interferences with cell integrity and compromises the temporal resolution. An innovative label-free optofluidic nanoplasmonic biosensor is introduced for single-cell analysis in real time. The nanobiosensor incorporates a novel design of a multifunctional microfluidic system with small volume microchamber and regulation channels for reliable monitoring of cytokine secretion from individual cells for hours. Different interleukin-2 secretion profiles are detected and distinguished from single lymphoma cells. The sensor configuration combined with optical spectroscopic imaging further allows us to determine the spatial single-cell secretion fingerprints in real time. This new biosensor system is anticipated to be a powerful tool to characterize single-cell signaling for basic and clinical research.


Assuntos
Técnicas Biossensoriais/instrumentação , Citocinas/metabolismo , Microfluídica/instrumentação , Nanotecnologia/instrumentação , Fenômenos Ópticos , Análise de Célula Única/instrumentação , Linhagem Celular Tumoral , Difusão , Humanos , Linfoma/ultraestrutura , Nanopartículas/química , Coloração e Rotulagem , Fatores de Tempo
11.
Lab Chip ; 17(14): 2517-2527, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28653722

RESUMO

Typical microfluidic systems take advantage of multiple storage reservoirs, pumps and valves for the storage, driving and release of buffers and other reagents. However, the fabrication, integration, and operation of such components can be difficult. In particular, the reliance of such components on external off-chip equipment limits their utility for creating self-sufficient, stand-alone microfluidic systems. Here, we demonstrate a porous sponge made of polydimethylsiloxane (PDMS), which is fabricated by templating microscale water droplets using a T-junction microfluidic structure. High-resolution microscopy reveals that this sponge contains a network of pores, interconnected by small holes. This unique structure enables the sponge to passively release stored solutions very slowly. Proof-of-concept experiments demonstrate that the sponge can be used for the passive release of stored solutions into narrow channels and circular well plates, with the latter used for inducing intracellular calcium signalling of immobilised endothelial cells. The release rate of stored solutions can be controlled by varying the size of interconnecting holes, which can be easily achieved by changing the flow rate of the water injected into the T-junction. We also demonstrate the active release of stored liquids into a fluidic channel upon the manual compression of the sponge. The developed PDMS sponge can be easily integrated into complex micro/macro fluidic systems and prepared with a wide array of reagents, representing a new building block for self-sufficient microfluidic systems.

12.
Electrophoresis ; 37(4): 645-57, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26643028

RESUMO

Dielectrophoresis is a widely used means of manipulating suspended particles within microfluidic systems. In order to efficiently design such systems for a desired application, various numerical methods exist that enable particle trajectory plotting in two or three dimensions based on the interplay of hydrodynamic and dielectrophoretic forces. While various models are described in the literature, few are capable of modeling interactions between particles as well as their surrounding environment as these interactions are complex, multifaceted, and computationally expensive to the point of being prohibitive when considering a large number of particles. In this paper, we present a numerical model designed to enable spatial analysis of the physical effects exerted upon particles within microfluidic systems employing dielectrophoresis. The model presents a means of approximating the effects of the presence of large numbers of particles through dynamically adjusting hydrodynamic drag force based on particle density, thereby introducing a measure of emulated particle-particle and particle-liquid interactions. This model is referred to as "dynamic drag force based on iterative density mapping." The resultant numerical model is used to simulate and predict particle trajectory and velocity profiles within a microfluidic system incorporating curved dielectrophoretic microelectrodes. The simulated data are compared favorably with experimental data gathered using microparticle image velocimetry, and is contrasted against simulated data generated using traditional "effective moment Stokes-drag method," showing more accurate particle velocity profiles for areas of high particle density.


Assuntos
Simulação por Computador , Eletroforese/métodos , Imageamento Tridimensional/métodos , Técnicas Analíticas Microfluídicas/métodos , Modelos Teóricos , Desenho de Equipamento , Hidrodinâmica , Microesferas
13.
Biomicrofluidics ; 9(6): 064120, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26759637

RESUMO

Microfluidic based blood plasma extraction is a fundamental necessity that will facilitate many future lab-on-a-chip based point-of-care diagnostic systems. However, current approaches for providing this analyte are hampered by the requirement to provide external pumping or dilution of blood, which result in low effective yield, lower concentration of target constituents, and complicated functionality. This paper presents a capillary-driven, dielectrophoresis-enabled microfluidic system capable of separating and extracting cell-free plasma from small amounts of whole human blood. This process takes place directly on-chip, and without the requirement of dilution, thus eliminating the prerequisite of pre-processed blood samples and external liquid handling systems. The microfluidic chip takes advantage of a capillary pump for driving whole blood through the main channel and a cross flow filtration system for extracting plasma from whole blood. This filter is actively unblocked through negative dielectrophoresis forces, dramatically enhancing the volume of extracted plasma. Experiments using whole human blood yield volumes of around 180 nl of cell-free, undiluted plasma. We believe that implementation of various integrated biosensing techniques into this plasma extraction system could enable multiplexed detection of various biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...