Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 12(4)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272740

RESUMO

Bacterial biofilm prevention and eradication are common treatment problems, hence there is a need for advanced and precise experimental methods for its monitoring. Bacterial resistance to antibiotics has resulted in an interest in using a natural bacterial enemy-bacteriophages. In this study, we present the application of quartz tuning forks (QTF) as impedance sensors to determine in real-time the direct changes in Pseudomonas aeruginosa PAO1 biofilm growth dynamics during Pseudomonas phage LUZ 19 treatment at different multiplicities of infection (MOI). The impedance of the electric equivalent circuit (EEC) allowed us to measure the series resistance (Rs) corresponding to the growth-medium resistance (planktonic culture changes) and the conductance (G) corresponding to the level of QTF sensor surface coverage by bacterial cells and the extracellular polymer structure (EPS) matrix. It was shown that phage impacts on sessile cells (G dynamics) was very similar in the 10-day biofilm development regardless of applied MOI (0.1, 1 or 10). The application of phages at an early stage (at the sixth h) and on three-day biofilm caused a significant slowdown in biofilm dynamics, whereas the two-day biofilm turned out to be insensitive to phage infection. We observed an inhibitory effect of phage infection on the planktonic culture (Rs dynamics) regardless of the MOI applied and the time point of infection. Moreover, the Rs parameter made it possible to detect PAO1 population regrowth at the latest time points of incubation. The number of phage-insensitive forms reached the level of untreated culture at around the sixth day of infection. We conclude that the proposed impedance spectroscopy technique can be used to measure the physiological changes in the biofilm matrix composition, as well as the condition of planktonic cultures in order to evaluate the activity of anti-biofilm compounds.


Assuntos
Biofilmes/crescimento & desenvolvimento , Espectroscopia Dielétrica/métodos , Fagos de Pseudomonas/fisiologia , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/virologia , Meios de Cultura , Matriz Extracelular de Substâncias Poliméricas/fisiologia
2.
Micron ; 129: 102792, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31811975

RESUMO

In this paper we present a metrological method for determination of mass density of focused ion beam induced deposition (FIBID) materials using quartz tuning fork (QTF) mass change sensors. Dimension and density determination of FIBID deposited nanostructures is necessary to develop and reliable and repeatable microfabribrication technology of the highest versatility. The proposed metrological methodology allows to determine mass change with 5 pg resolution and accuracy below 5 % if density is considered. The described method is suitable for precise FIBID precursor parameters determination conducted during the deposition as actuation and signal read-out of the applied QTF can be performed electrically. High accuracy, resolution and stability are ensured due to excellent properties of quartz forming the sensor structure.

3.
Sensors (Basel) ; 19(6)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30884751

RESUMO

Miniaturized and integrated analytical devices, including chemical sensors, are at the forefront of modern analytical chemistry. The construction of novel analytical tools takes advantage of contemporary micro- and nanotechnologies, as well as materials science and technology. Two electrochemical techniques were used in experiments: electrochemical impedance spectroscopy and cyclic voltammetry. The goal of this study was to investigate electron transfer resistance in a model solution containing Fe 2 + / 3 + ions and protein adsorption using integrated electrochemical cells with different geometry. Tests performed at various Fe 2 + / 3 + concentration allowed to verify that these cells work properly. The influence of bovine serum albumin adsorbing to the surface of the integrated electrochemical cells was investigated. In electrochemical impedance spectroscopy, the value of R c t increased with protein adsorption and the relative change of R c t was in range 21% to 55%. In cyclic voltammetry the decreasing amperometric response of the working electrode was used as evidence of protein adsorption on the electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...