Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(27): 39663-39677, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831146

RESUMO

The mixed wastewater generated by anodic oxidation coating facilities contains high levels of various contaminants, including iron, aluminum, conductivity, chemical oxygen demand (COD), and sulfate. In this study, the effectiveness of the membrane distillation (MD) process using polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) membranes was investigated to treat mixed wastewater from an anodized coating factory. The results indicate that both hydrophobic membranes effectively removed targeted contaminants. However, the PTFE membrane achieved higher removal efficiencies, with over 99% removal of sulfate, conductivity, iron, and aluminum, 85.7% of COD, and 86% of total organic carbon (TOC). In contrast, the PVDF membrane exhibited a significant decline in removal efficiency as the temperature increased and performed well only at lower feed temperatures. The PTFE membranes outperformed the PVDF membranes in treating chemically intensive anodic oxidation wastewaters. This superiority can be attributed to the PTFE membrane's morphology and structure, which are less influenced by feed water temperature and chemicals. Additionally, its slippery surface imparts anti-adhesion properties, effectively preventing membrane fouling, and maintaining the treated water quality and flux for longer operation time.


Assuntos
Destilação , Membranas Artificiais , Oxirredução , Politetrafluoretileno , Polivinil , Águas Residuárias , Águas Residuárias/química , Politetrafluoretileno/química , Polivinil/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Poluentes Químicos da Água , Polímeros de Fluorcarboneto
2.
Water Sci Technol ; 87(11): 2872-2889, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37318929

RESUMO

The efficiency of UV-activated sodium percarbonate (SPC) and sodium hypochlorite (SHC) in Norfloxacin (Norf) removal from an aqueous solution was assessed. Control experiments were conducted and the synergistic effect of the UV-SHC and UV-SPC processes were 0.61 and 2.89, respectively. According to the first-order reaction rate constants, the process rates were ranked as UV-SPC > SPC > UV and UV-SHC > SHC > UV. Central composite design was applied to determine the optimum operating conditions for maximum Norf removal. Under optimum conditions (UV-SPC: 1 mg/L initial Norf, 4 mM SPC, pH 3, 50 min; UV-SHC: 1 mg/L initial Norf, 1 mM SHC, pH 7, 8 min), the removal yields for the UV-SPC and UV-SHC were 71.8 and 72.1%, respectively. HCO3-, Cl-, NO3-, and SO42- negatively affected both processes. UV-SPC and UV-SHC processes were effective for Norf removal from aqueous solution. Similar removal efficiencies were obtained with both processes; however, this removal efficiency was achieved in a much shorter time and more economically with the UV-SHC process.


Assuntos
Hipoclorito de Sódio , Poluentes Químicos da Água , Norfloxacino , Poluentes Químicos da Água/análise , Oxirredução , Ânions , Carbonatos , Raios Ultravioleta , Peróxido de Hidrogênio
3.
Environ Sci Pollut Res Int ; 30(1): 869-883, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35904739

RESUMO

In this study, the performance of ultraviolet (UV)-assisted persulfate (PS) and percarbonate (PC) oxidation processes in oxytetracycline (OTC) removal was investigated. UVC lamps were used for the photolysis process and the effect of operating parameters (initial pH, oxidant dose, initial OTC concentration, UV intensity) on OTC removal efficiency was determined. Control experiments were carried out at pH 5.5 and 32 W UV power for 60 min by adding a 4 mM oxidant with 10 mg/L initial OTC concentration. The OTC removal efficiency obtained as a result of only photolysis was 17.3% and the removal efficiency obtained by PS and PC oxidation alone was 18.3% and 12.7%, respectively. The OTC removal efficiencies increased in the combined processes and reached 58.1% and 69.9% for the UV-PS and UV-PC processes, respectively. The reaction rates of the processes were ranked as UV-PC > UV-PS > PS > UV > PC. In the UV-PS and UV-PC processes, the highest removal efficiencies were achieved at alkaline pH values. The OTC removal efficiency was increased with the increase in oxidant dose; however, the efficiency decreased after a certain dose due to the scavenging effect. The removal efficiency also increased as the initial OTC concentration decreased. The UV intensity had a positive effect on OTC removal efficiency. The effect of the water matrix on OTC removal efficiency was investigated while the dominant radical types were determined in UV-assisted processes. The EE/O values for the UV-PS and UV-PC processes were calculated as 211 kWh/m3 and 153 kWh/m3, respectively for 60 min of reaction time. Although similar removal efficiencies were obtained with both UV-assisted processes, the UV-PC process steps forward in terms of being a novel, environmentally friendly, more economic, and promising technology for OTC removal.


Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Purificação da Água , Fotólise , Cinética , Poluentes Químicos da Água/análise , Carbonatos , Oxidantes , Oxirredução , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...