Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16228, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004667

RESUMO

Environmental constraints associated with fossil fuels have driven researchers to find a novel, potential and environmentally benign alternative fuel. Biodiesel, vegetable oil, and alcohol have gained rapid momentum thanks to their renewable nature and comparable energy contents in recent years. Accordingly, a Ternary fuel blend is prepared comprising three fuels namely diesel, biodiesel, and pentanol. Waste cooking oil was identified as the source for biodiesel and Pentanol was chosen among various alcohol alternatives due to improved energy density, reduced toxicity. These are endorsed to the enhancement in surface area-volume ratio of nano additives which boosts the catalytic combustion activity and also causing lesser fuel to take part in combustion for maintaining a constant engine speed. The experimentation is done with ternaryfuel blends with varying pentanol and biodiesel concentrations of diesel, biodiesel and pentanol). Upon experimentation, it was observed that, ternary fuel blend 'TF' comprising 70% diesel, 20% biodiesel and 10% pentanol, yielded best performance and was used for doping of Alumina oxide (Al2O3) nano additives. The Al2O3 nanoparticles were doped with ternary blends at fractions of 10 ppm, 20 ppm, and 30 ppm. It was observed that 20 ppm Al2O3 nanoparticle blended TF blend improved BTE and lowered BSFC by about 12.01% and 22.57% respectively. The performance tremendously along with lowered the CO emission by 49.21%, HC emission by 18.91% and smoke opacity by 9.02%.

2.
Sci Rep ; 14(1): 12818, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834602

RESUMO

Recent years have seen an increase in research on biodiesel, an environmentally benign and renewable fuel alternative for traditional fossil fuels. Biodiesel might become more cost-effective and competitive with diesel if a solid heterogeneous catalyst is used in its production. One way to make biodiesel more affordable and competitive with diesel is to employ a solid heterogeneous catalyst in its manufacturing. Based on X-ray diffraction (XRD) and Fourier Transform infrared spectroscopy (FTIR), the researchers in this study proved their hypothesis that iron oxide core-shell nanoparticles were generated during the green synthesis of iron-based nanoparticles (FeNPs) from Camellia Sinensis leaves. The fabrication of spherical iron nanoparticles was successfully confirmed using scanning electron microscopy (SEM). As a heterogeneous catalyst, the synthesised catalyst has shown potential in facilitating the conversion of algae oil into biodiesel. With the optimal parameters (0.5 weight percent catalytic load, 1:6 oil-methanol ratio, 60 °C reaction temperature, and 1 h and 30 min reaction duration), a 93.33% yield was attained. This may be due to its acid-base property, chemical stability, stronger metal support interaction. Furthermore, the catalyst was employed for transesterification reactions five times after regeneration with n-hexane washing followed by calcination at 650 °C for 3 h.


Assuntos
Biocombustíveis , Camellia sinensis , Folhas de Planta , Folhas de Planta/química , Catálise , Camellia sinensis/química , Ferro/química , Nanopartículas Metálicas/química , Difração de Raios X , Esterificação , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Chemosphere ; 350: 141005, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135127

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widely present in the atmosphere and primarily originate from the incomplete burning of fossil fuels and biofuels. Exposure to PAHs leads to harmful effects on human health and the environment. Diesel engines are a major source of PAH production in the transportation sector. Various approaches have been employed to reduce PAH emissions from diesel engines, including the use of biodiesel, green gaseous fuels, exhaust gas recirculation, exhaust after-treatment, and genetically modifying biodiesel with nanoparticles. This review focuses on PAH emissions from different generations of fuels and examines the remedial control actions taken to mitigate PAH formation. The study underscores the necessity for effective regulation of emissions from diesel engines, especially in developing countries where the reliance on fossil fuels is significant. Biodiesel has shown promise in reducing PAHs and carcinogenic pollutants, with higher biodiesel concentrations resulting in lower PAH formation. Replacing diesel with biodiesel and optimizing engine operating conditions are feasible methods to reduce PAH levels in the atmosphere. The use of nanoparticles in fuel blends and higher oxygen content in combustion chambers are also considered potential strategies for pollutant reduction. Additionally, the utilization of hydrogen and ammonia as secondary fuels has been explored as promising alternatives to fossil fuels. The study highlights the importance of further research on the presence of residual PAHs in the atmosphere and the implementation of strategies to curtail vehicular emissions.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Gasolina , Biocombustíveis/análise , Emissões de Veículos/prevenção & controle , Emissões de Veículos/análise , Hidrocarbonetos/análise , Combustíveis Fósseis
4.
Environ Res ; 231(Pt 3): 116216, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224944

RESUMO

The present investigation explores the feasibility of generating biogas from water hyacinth (WH) through a pretreatment process. The WH samples were subjected to a high concentration of H2SO4 pretreatment to enhance biogas production. The H2SO4 pretreatment aids in breaking down the lignocellulosic materials found in the WH. Additionally, it helps modify the cellulose, hemicellulose, and lignin, which assists in the anaerobic digestion process. The samples underwent pretreatment with 5% v/v H2SO4 for 60 min. Biogas production was conducted for both untreated and pretreated samples. Furthermore, sewage sludge and cow dung were used as inoculants to promote fermentation in the absence of oxygen. The results of this study demonstrate that the pretreatment of water hyacinth with 5% v/v H2SO4 for 60 min considerably enhances biogas production through the anaerobic co-digestion process. The maximum biogas production was recorded by T. Control-1, with a production rate of 155 mL on the 15th day compared to all other controls. All the pretreated samples showed the highest biogas production on the 15th day, which is comparatively five days earlier than the untreated samples. In terms of CH4 production, the maximum yield was observed between the 25th and 27th days. These findings suggest that water hyacinth is a viable source of biogas production, and the pretreatment method significantly improves biogas yield. This study presents a practical and innovative approach to biogas production from water hyacinth and highlights the potential for further research in this area.


Assuntos
Biocombustíveis , Eichhornia , Anaerobiose , Metano , Esgotos , Nutrientes , Digestão
5.
Environ Res ; 231(Pt 1): 116010, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37119840

RESUMO

This study examines the effect of rice husk ash (RHA) and nanosilica, and ground granular blast furnace slag (GGBS) on concrete mechanical and durability properties. The cement had been partially replaced with nanosilica and RHA having substitution percentages up to 6% and 10% respectively whereas the sand had been partially replaced by GGBS at 20% for all mixes. A water-to-cementitious materials ratio of 0.38 and a sand-to-cementitious materials ratio of 2.04 were used to cast eight different concrete mixes. The nanosilica used in the present research possessed some favorable effects such as rich fineness, higher surface area and greater reactivity which signified one of the best cement replacement materials. Both the durability and strength of concrete specimens possessing nanosilica, RHA and GGBS was evaluated using in-elastic neutron scattering, SEM image, piezoresistive test, split tensile strength, flexural strength and compressive strength test. Concrete specimens were also subjected to chloride penetration and water absorption to examine the impact of replacement materials on the concrete's durability attributes. Concrete performance was increased by the ternary blending of concrete because of the active participation of nanosilica in durability and strength at early ages, both RHA and GGBS played an important role in improving packing density. It was found that as the percentage of cement replaced with nanosilica increases, the durability of concrete also significantly increases. But the optimum strength parameter was found when 4% of cement was replaced by the nanosilica effectively. The proposed ternary mix may be eco-friendly by saving cement and enhancing strength and durability effectively.


Assuntos
Resíduos Industriais , Oryza , Areia , Agricultura , Poeira , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...