Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 132: 111954, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38554444

RESUMO

Diabetic nephropathy (DN) is a serious kidney disorder driven by diabetes and affects people all over the world. One of the mechanisms promoting NF-κB-induced renal inflammation and injury has been theorized to be ATM signaling. On the other hand, AMPK, which can be activated by the naturally occurring alkaloid harmine (HAR), has been proposed to stop that action. As a result, the goal of this study was to evaluate the therapeutic effectiveness of HAR against streptozotocin (STZ)-induced DN in rats through AMPK-mediated inactivation of ATM pathways. Twenty male Wistar rats were grouped into 4 groups, as follow: CONT, DN, HAR (10 mg/kg), DN + HAR, where HAR was daily administered I.P. once for 2 weeks. The renal AMPK and PGC-1α expressions, as well as Sirt1 levels, were assessed. To ascertain the oxidative reactions, renal Nrf2 expression, HO-1, MDA, and TAC concentrations were measured. As parts of ATM pathways, ATM and p53 expressions, in addition to GSK-3ß levels were determined. Renal expression of NEMO, TNF-α, and IL-6 levels were also estimated. Moreover, histopathological and immunohistochemical detection of Bcl-2, Bax, and caspase 3 were reported. Results indicated that HAR intake notably alleviated STZ-induced kidney damage by triggering AMPK and Sirt1, which in turn boosted PGC-1α, improved NRf2/HO-1 axis, and lowered ROS production. As a consequence, HAR blocked the ATM-triggered renal inflammation and minimized caspase-3 expression by repressing the Bax/Bcl2 ratio. Because of its ability to activate AMPK/Nrf2 axis, HAR may represent an emerging avenue for future DN therapy by blocking ATM pathways.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas Mutadas de Ataxia Telangiectasia , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Harmina , Fator 2 Relacionado a NF-E2 , Ratos Wistar , Transdução de Sinais , Animais , Masculino , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Harmina/farmacologia , Harmina/uso terapêutico , Estreptozocina , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sirtuína 1/metabolismo
2.
Pathol Res Pract ; 253: 155085, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38183822

RESUMO

Stroke, a major global cause of mortality, leads to a range of problems for those who survive. Besides its brutal events, stroke also tends to have a characteristic of recurrence, making it a complex disease involving intricate regulatory networks. One of the major cellular regulators is the non-coding RNAs (ncRNA), specifically microRNAs (miRNAs), thus the possible functions of miRNAs in the pathogenesis of stroke are discussed as well as the possibility of using miRNA-based therapeutic approaches. Firstly, the molecular mechanisms by which miRNAs regulate vital physiological processes, including synaptic plasticity, oxidative stress, apoptosis, and the integrity of the blood-brain barrier (BBB) are reviewed. The miRNA indirectly impacts stroke outcomes by regulating BBB function and angiogenesis through the targeting of transcription factors and angiogenic factors. In addition, the tendency for some miRNAs to be upregulated in response to hypoxia, which is a prevalent phenomenon in stroke and various neurological disorders, highlights the possibility that it controls hypoxia-inducible factor (HIF) signaling and angiogenesis, thereby influencing the integrity of the BBB as examples of the discussed mechanisms. Furthermore, this review explores the potential therapeutic targets that miRNAs may offer for stroke recovery and highlights their promising capacity to alleviate post-stroke complications. This review provides researchers and clinicians with valuable resources since it attempts to decipher the complex network of miRNA-mediated mechanisms in stroke. Additionally, the review addresses the interplay between miRNAs and stroke risk factors as well as clinical applications of miRNAs as diagnostic and prognostic markers.


Assuntos
MicroRNAs , Acidente Vascular Cerebral , Humanos , MicroRNAs/genética , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/genética , Fatores de Transcrição , Hipóxia , Apoptose
3.
Pathol Res Pract ; 253: 155093, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38184962

RESUMO

Stroke is a widespread neurological disorder associated with physical disabilities, mortality, and economic burden. In recent decades, substantial progress has been achieved in reducing the impact of this public health problem. However, further understanding of the pathophysiology of stroke and the underlying genetic pathways is required. The pathological mechanisms of stroke comprise multifaceted molecular cascades regulated by various microRNAs (miRNAs). An increasing number of studies have highlighted the role of miRNAs, which have received much attention during the last decades as an important class of post-transcriptional regulators. It was shown that miRNAs exert their role in the etiology of stroke via mediating excitotoxicity and neuroinflammation. Additionally, miRNAs could be helpful as non-invasive or minimally invasive biomarkers and therapeutic agents. Thus, the current review focused on the interplay of these miRNAs in stroke pathology to upgrade the existing therapeutic strategies.


Assuntos
MicroRNAs , Acidente Vascular Cerebral , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Neuroinflamatórias , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/terapia , Biomarcadores/metabolismo
4.
Pathol Res Pract ; 253: 155027, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101159

RESUMO

Oral cancer (OC) is a widely observed neoplasm on a global scale. Over time, there has been an increase in both its fatality and incidence rates. Oral cancer metastasis is a complex process that involves a number of cellular mechanisms, including invasion, migration, proliferation, and escaping from malignant tissue through either lymphatic or vascular channels. MicroRNAs (miRNAs) are a crucial class of short non-coding RNAs recognized as significant modulators of diverse cellular processes and exert a pivotal influence on the carcinogenesis pathway, functioning either as tumor suppressors or as oncogenes. It has been shown that microRNAs (miRNAs) have a role in metastasis at several stages, including epithelial-mesenchymal transition, migration, invasion, and colonization. This regulation is achieved by targeting key genes involved in these pathways by miRNAs. This paper aims to give a contemporary analysis of OC, focusing on its molecular genetics. The current literature and emerging advancements in miRNA dysregulation in OC are thoroughly examined. This project would advance OC diagnosis, prognosis, therapy, and therapeutic implications.


Assuntos
MicroRNAs , Neoplasias Bucais , Humanos , MicroRNAs/metabolismo , Carcinogênese/genética , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Oncogenes , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Transição Epitelial-Mesenquimal/genética
5.
Pathol Res Pract ; 250: 154817, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37713736

RESUMO

Malignant pleural mesothelioma (MPM) is a highly lethal form of pleural cancer characterized by a scarcity of effective therapeutic interventions, resulting in unfavorable prognoses for afflicted individuals. Besides, many patients experience substantial consequences from being diagnosed in advanced stages. The available diagnostic, prognostic, and therapeutic options for MPM are restricted in scope. MicroRNAs (miRNAs) are a subset of small, noncoding RNA molecules that exert significant regulatory influence over several cellular processes within cell biology. A wide range of miRNAs have atypical expression patterns in cancer, serving specific functions as either tumor suppressors or oncomiRs. This review aims to collate, epitomize, and analyze the latest scholarly investigations on miRNAs that are believed to be implicated in the dysregulation leading to MPM. miRNAs are also discussed concerning their potential clinical usefulness as diagnostic and prognostic biomarkers for MPM. The future holds promising prospects for enhancing diagnostic, prognostic, and therapeutic modalities for MPM, with miRNAs emerging as a potential trigger for such advancements.

6.
Expert Opin Ther Targets ; 26(5): 487-506, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35549595

RESUMO

BACKGROUND: Asthma is a chronic inflammatory lung disease that universally affects millions of people. Despite numerous well-defined medications, asthma is poorly managed. This study aims to clarify the potential therapeutic effect of Dapagliflozin (DAPA) against lung inflammation, oxidative stress, and associated bronchospasm in OVA-sensitized rat asthma model. RESEARCH DESIGN AND METHODS: Twenty-five rats were allocated into (Control, Asthma, DEXA, DAPA, and DAPA+DEXA). All treatments were administered orally once a day for two weeks. The BALF levels of IL-17, TNFα, IL-1ß, and MCP-1 were determined to assess airway inflammation. For oxidative stress determination, BALF MDA levels and TAC were measured. The BALF S100A4 level and NO/sGC/cGMP pathway were detected. Lung histopathological findings and immunohistochemical investigation of eNOS and iNOS activities were recorded. RESULTS: DAPA significantly reduced (p < 0.001) airway inflammatory-oxidative markers (IL-17, TNFα, IL-1ß, MCP1, and MDA), but increased (p < 0.001) TAC, and mitigated bronchospasm by activating NO/sGC/cGMP and reducing S100A4 (p < 0.001). The biochemical and western blot studies were supported by histopathological and immunohistochemical investigations. CONCLUSIONS: DAPA presents a new prospective possibility for future asthma therapy due to its anti-inflammatory, anti-oxidant, and bronchodilator properties. DAPA has the property of reducing Dexamethasone (DEXA)-associated unfavorable effects during asthma treatment.


Assuntos
Asma , Espasmo Brônquico , Animais , Asma/tratamento farmacológico , Compostos Benzidrílicos , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Glucosídeos , Humanos , Interleucina-17 , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo , Ovalbumina/farmacologia , Ovalbumina/uso terapêutico , Estresse Oxidativo , Estudos Prospectivos , Ratos , Fator de Necrose Tumoral alfa/metabolismo
7.
Inflammopharmacology ; 30(3): 961-980, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35366745

RESUMO

Neuroinflammation, a major component of many CNS disorders, has been suggested to be associated with diacetyl (DA) exposure. DA is commonly used as a food flavoring additive and condiment. Lately, silymarin (Sily) has shown protective and therapeutic effects on neuronal inflammation. The study aimed to explore the role of Sily in protecting and/or treating DA-induced neuroinflammation. Neuroinflammation was induced in rats by administering DA (25 mg/kg) orally. Results revealed that Sily (50 mg/kg) obviously maintained cognitive and behavioral functions, alleviated brain antioxidant status, and inhibited microglial activation. Sily enhanced IL-10, GDNF and Dyn levels, reduced IFN-γ, TNFα, and IL-1ß levels, and down-regulated the MAPK pathway. Immunohistochemical investigation of EGFR and GFAP declared that Sily could conserve neurons from inflammatory damage. However, with continuing DA exposure during Sily treatment, oxidative stress and neuroinflammation were less mitigated. These findings point to a novel mechanism involving the Dyn/GDNF and MAPK pathway through which Sily might prevent and treat DA-induced neuroinflammation.


Assuntos
Silimarina , Animais , Diacetil , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Doenças Neuroinflamatórias , Estresse Oxidativo , Ratos , Transdução de Sinais/fisiologia , Silimarina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...