Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; : 142802, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996977

RESUMO

The decline in male reproductive health, characterized by diminishing sperm count and testosterone levels, has raised concerns about environmental influences, particularly endocrine-disrupting chemicals (EDCs). Tris(2,3-dibromopropyl)isocyanurate (TBC), a novel brominated flame retardant widely used in electronics, textiles, and furniture, has emerged as a significant environmental contaminant with potential reproductive health implications. In this study, we investigated the molecular mechanisms underlying TBC-induced reproductive toxicity, particularly focusing on its impact on steroidogenesis and androgen signaling pathways using the GC-1 spg cell line as an in vitro model. Exposure of GC-1 spg cells to TBC, alone or in combination with testosterone or the anti-androgen flutamide resulted in decreased metabolic activity and increased lactate dehydrogenase release, indicating cytotoxic effects. Furthermore, TBC exposure led to a reduction in progesterone synthesis, while testosterone production remained unaffected. Interestingly, estradiol synthesis was diminished after TBC exposure, suggesting a disruption in steroid hormone balance critical for spermatogenesis. Mechanistic investigations revealed alterations in key proteins involved in the non-classical testosterone pathway and steroidogenesis. TBC exposure downregulated epidermal growth factor receptor (EGFR), protein kinase B (AKT), and phosphorylated cyclic AMP response element-binding protein (p-CREB), indicating suppression of non-classical androgen signaling. Additionally, decreased levels of steroidogenic acute regulatory protein (StAR) and 3-beta-hydroxysteroid dehydrogenase (HSD3ß1) suggest impaired steroidogenesis. Here we uncover the intricate molecular mechanisms underlying TBC-induced reproductive toxicity, highlighting its potential to disrupt steroid hormone synthesis and androgen signaling pathways. Understanding the adverse effects of TBC on male reproductive health is crucial for developing strategies to mitigate its environmental impact and safeguard human fertility.

2.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000436

RESUMO

A range of hybrid molecules incorporating the ciminalum moiety in the thiazolidinone ring demonstrate significant anticancer and antimicrobial properties. Therefore, the aim of our study was to evaluate the properties and mechanism of action of two 4-thiazolidinone-based derivatives, i.e., 3-{5-[(Z,2Z)-2-chloro-3-(4-nitrophenyl)-2-propenylidene]-4-oxo-2-thioxothiazolidin-3-yl}propanoic acid (Les-45) and 5-[2-chloro-3-(4-nitrophenyl)-2-propenylidene]-2-(3-hydroxyphenylamino)thiazol-4(5H)-one (Les-247). In our study, we analyzed the impact of Les-45 and Les-247 on metabolic activity, caspase-3 activity, and the expression of genes and proteins related to inflammatory and antioxidant defenses and cytoskeleton rearrangement in healthy human fibroblasts (BJ) and a human lung carcinoma cell line (A549). The cells were exposed to increasing concentrations (1 nM to 100 µM) of the studied compounds for 24 h and 48 h. A decrease in the metabolic activity in the BJ and A549 cell lines was induced by both compounds at a concentration range from 10 to 100 µM. Both compounds decreased the mRNA expression of NRF2 (nuclear factor erythroid 2-related factor 2) and ß-actin in the BJ cells. Interestingly, a significant decrease in the level of NF-κB gene and protein expression was detected in the BJ cell line, suggesting a direct impact of the studied compounds on the inhibition of inflammation. However, more studies are needed due to the ability of Les-45 and Les-247 to interfere with the tubulin/actin cytoskeleton, i.e., a critical system existing in eukaryotic cells.


Assuntos
NF-kappa B , Transdução de Sinais , Tiazolidinas , Humanos , Tiazolidinas/farmacologia , Tiazolidinas/química , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células A549 , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química
3.
Cells ; 13(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920636

RESUMO

Cancer is one of the most important problems of modern societies. Recently, studies have reported the anticancer properties of rosiglitazone related to its ability to bind peroxisome proliferator receptor γ (PPARγ), which has various effects on cancer and can inhibit cell proliferation. In this study, we investigated the effect of new 4-thiazolidinone (4-TZD) hybrids Les-4369 and Les-3467 and their effect on reactive oxygen species (ROS) production, metabolic activity, lactate dehydrogenase (LDH) release, caspase-3 activity, and gene and protein expression in human foreskin fibroblast (BJ) cells and lung adenocarcinoma (A549) cells. The ROS production and caspase-3 activity were mainly increased in the micromolar concentrations of the studied compounds in both cell lines. Les-3467 and Les-4369 increased the mRNA expression of PPARG, P53 (tumor protein P53), and ATM (ATM serine/threonine kinase) in the BJ cells, while the mRNA expression of these genes (except PPARG) was mainly decreased in the A549 cells treated with both of the tested compounds. Our results indicate a decrease in the protein expression of AhR, PPARγ, and PARP-1 in the BJ cells exposed to 1 µM Les-3467 and Les-4369. In the A549 cells, the protein expression of AhR, PPARγ, and PARP-1 increased in the treatment with 1 µM Les-3467 and Les-4369. We have also shown the PPARγ modulatory properties of Les-3467 and Les-4369. However, both compounds prove weak anticancer properties evidenced by their action at high concentrations and non-selective effects against BJ and A549 cells.


Assuntos
PPAR gama , Pirazóis , Espécies Reativas de Oxigênio , Humanos , Células A549 , PPAR gama/metabolismo , PPAR gama/genética , Espécies Reativas de Oxigênio/metabolismo , Pirazóis/farmacologia , Tiazolidinas/farmacologia , Indóis/farmacologia , Caspase 3/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Apoptose/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo
4.
Steroids ; 207: 109438, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723842

RESUMO

To elucidate the effect of cyclooxygenase-2 (COX-2) inhibition on corticosterone release, mice were divided into a group receiving NS398, a selective COX-2 inhibitor at a dose of 3 mg/kg for seven days, and a group receiving NS398 for fourteen days. After this time, the mice were sacrificed, and blood serum was collected. An ELISA protocol was used to analyze serum corticosterone levels. Short-term COX-2 inhibition increased corticosterone levels, while long-term inhibition lowered them. The exact schedule of experiments was repeated after the lipopolysaccharide (LPS) Escherichia coli challenge in mice to check the influence of stress stimuli on the tested parameters. In this case, we observed increases in corticosterone levels, significant in a seven-day pattern. These results indicate that corticosterone levels are regulated through a COX-2-dependent mechanism in mice.


Assuntos
Corticosterona , Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Lipopolissacarídeos , Nitrobenzenos , Sulfonamidas , Animais , Camundongos , Corticosterona/sangue , Inibidores de Ciclo-Oxigenase 2/farmacologia , Nitrobenzenos/farmacologia , Sulfonamidas/farmacologia , Lipopolissacarídeos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/sangue , Masculino , Fatores de Tempo
6.
Cell Commun Signal ; 21(1): 251, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735683

RESUMO

The treatment of depression with pharmaceuticals is associated with many adverse side effects, including male fertility problems. The precise mechanisms by which these agents affect testicular cells remain largely unknown, but they are believed to induce cellular stress, which is sensed by the endoplasmic reticulum (ER) and the Golgi apparatus. These organelles are responsible for maintaining cellular homeostasis and regulating signal pathways that lead to autophagy or apoptosis. Therefore, in this study, we aimed to investigate the autophagy, ER, and Golgi stress-related pathways in mouse testis following treatment with antidepressant-like substances (ALS) and ALS combined with lipopolysaccharide (LPS). We found that most ALS and activated proteins are associated with the induction of apoptosis. However, when imipramine (IMI) was combined with NS-398 (a cyclooxygenase-2 inhibitor) after LPS administration, we observed a marked increase in the BECLIN1, Bcl-2, ATG16L, and LC3 expression, which are marker proteins of autophagosome formation. The expression of the BECN1 and ATG16L genes was also high compared to the control, indicating the induction of autophagy processes that may potentially protect mouse testicular cells from death and regulate metabolism in the testis. Our findings may provide a better understanding of the stress-related effects of specific ALS on the testis. Video Abstract.


Assuntos
Lipopolissacarídeos , Animais , Masculino , Camundongos , Antidepressivos/farmacologia , Autofagia , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Testículo
7.
J Steroid Biochem Mol Biol ; 234: 106398, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37703931

RESUMO

Good-quality reproductive cells are essential for reproduction. Endocrine disruptors are widely available in the environment and are known to have an adverse effect on spermatogenesis and steroidogenesis. One of them is tris(2,3-dibromopropyl) isocyanurate (TBC), i.e. one of the novel brominated flame retardants (NBFR). TBC is a widely distributed ingredient used in the production of flame retardants. Currently, it is known to affect the hormonal system, but the exact mechanism of its action is unknown. Therefore, the aim of the study was to determine whether TBC alone and in cotreatment with BHPI (estrogen receptor alpha antagonist) has an impact on the expression of nuclear receptors involved in the formation of steroid hormones, proteins, and enzymes responsible for steroidogenesis and the levels of steroid hormones (E2, P4, and T) in the GC-1 spg cell line as a mouse model of spermatogenic cells in vitro. Our results indicate that ERα is involved in the mechanism of TBC action, while no activation of PPARγ, AhR, and IGF-1R was observed. In addition, a decrease in the levels of most of the analyzed proteins and enzymes involved in steroid conversion was observed. Only Cyp19a1 was upregulated after TBC, BHPI, and TBC with BHPI cotreatment. In all the analyzed groups, a significant decrease in P4 and a subtle decrease in T and E2 were observed in the production and secretion of the hormones to the culture medium, compared to the control. The obtained results confirm the involvement of TBC in the dysregulation of steroid biosynthesis, which may affect male fertility.


Assuntos
Receptor alfa de Estrogênio , Retardadores de Chama , Animais , Masculino , Camundongos , Hormônios , Esteroides
8.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903582

RESUMO

Tris(2,3-dibromopropyl) isocyanurate (TBC) belongs to the class of novel brominated flame retardants (NFBRs) that are widely used in industry. It has commonly been found in the environment, and its presence has been discovered in living organisms as well. TBC is also described as an endocrine disruptor that is able to affect male reproductive processes through the estrogen receptors (ERs) engaged in the male reproductive processes. With the worsening problem of male infertility in humans, a mechanism is being sought to explain such reproductive difficulties. However, so far, little is known about the mechanism of action of TBC in male reproductive models in vitro. Therefore, the aim of the study was to evaluate the effect of TBC alone and in cotreatment with BHPI (estrogen receptor antagonist), 17ß-estradiol (E2), and letrozole on the basic metabolic parameters in mouse spermatogenic cells (GC-1 spg) in vitro, as well as the effect of TBC on mRNA expression (Ki67, p53, Pparγ, Ahr, and Esr1). The presented results show the cytotoxic and apoptotic effects of high micromolar concentrations of TBC on mouse spermatogenic cells. Moreover, an increase in Pparγ mRNA levels and a decrease in Ahr and Esr1 gene expression were observed in GS-1spg cells cotreated with E2. These results suggest the significant involvement of TBC in the dysregulation of the steroid-based pathway in the male reproductive cell models in vitro and may be the cause of the currently observed deterioration of male fertility. However, more research is needed to reveal the full mechanism of TBC engagement in this phenomenon.


Assuntos
Retardadores de Chama , PPAR gama , Humanos , Masculino , Animais , Camundongos , Triazinas , Estradiol
10.
Bioorg Chem ; 128: 106075, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952447

RESUMO

Development of cancer drug-resistance is still an ongoing problem in the modern anticancer treatment. Therefore, there is a need to search for a new active substance, which may become a potential anticancer agent. 4-Thiazolidinones are well-described substances with cytotoxicity against cancer cells in vitro. Therefore, the aim of this study was to evaluate the effect of two 4-thiazolidinone-based derivatives (Les-2769 and Les-3266) on the PPARγ-dependent cytotoxicity in normal human skin fibroblasts (BJ) and squamous cell carcinoma (SCC-15) in vitro. The data obtained showed a cytotoxic effect of Les-2769 and Les-3266 used in micromolar concentrations on SCC-15 and BJ cells, manifesting by a decrease in the metabolic activity, an increase in the release of lactate dehydrogenase, and caspase-3 activity. The co-treatment of the cells with Les-3266 and an antagonist (GW9662) or an agonist (rosiglitazone) of the PPARγ receptor induced changes in the above-mentioned parameters in the BJ and SCC-15 cells, compared to the Les-3266 alone exposure; this was not found in the Les-2769-treated cells. The further analysis of the compounds indicated changes in the expression of the PPARγ, KI67, and NF-κB genes. Moreover, the tested compounds caused an increase in the level of PPARγ mRNA expression in a similar way to rosiglitazone in SCC-15, which may indicate the affinity of the compounds for PPARγ. Molecular docking is consistent with experimental in vitro data about the potential agonistic activity of Les-2769 and Les-3266 towards PPARγ receptors. Summarizing, the anticancer effect of both compounds was observed in the SCC-15 cells in vitro; moreover, the mechanism of action of Les-3266 in cells is mediated probably by interaction with the PPARγ receptor pathway, which needs in-depth study.


Assuntos
Antineoplásicos , Tiazolidinedionas , Antineoplásicos/farmacologia , Humanos , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Rosiglitazona , Tiazolidinedionas/farmacologia , Tiazolidinas/farmacologia
11.
Neurochem Int ; 159: 105405, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35934159

RESUMO

Elastin-derived peptides (EDPs) contain replications of the Val-Gly-Val-Ala-Pro-Gly (VGVAPG) hexapeptide. It has been described that the VGVAPG peptide induces reactive oxygen species (ROS) production in murine monocytes and astrocytes, human fibroblasts, and the human neuroblastoma (SH-SY5Y) cell line. To date, there is growing evidence that calcium channel blockers (CCBs) reduce oxidative stress and development of inflammation in the nervous system. Therefore, the aim of the present study was to evaluate the impact of such CCBs as Nifedipine, Verapamil, and MK-801 on the expression of peroxisome proliferator-activated receptor (Pparγ), i.e. ROS-related and inflammation-related proteins, in mouse astrocytes exposed in vitro to the VGVAPG peptide. The experiments showed that Nifedipine or MK-801 used in co-treatment with the VGVAPG peptide potentiated the effect of this peptide on the Pparγ level after the 24-h and 48-h treatment. Moreover, all studied compounds decreased the VGVAPG-induced caspase-1 activity in both time intervals. The data also showed that the VGVAPG peptide decreased the interleukin 1 beta (IL-1ß) level in both studied time intervals. Upon a short-time exposure, the use of CCBs intensified the decrease in IL-1ß stimulated by the VGVAPG peptide, opposite to the longer treatment. Moreover, the VGVAPG peptide decreased the IL-1ßR1 level in both studied time intervals. After 24 h, Nifedipine and Verapamil potentiated the effect of the VGVAPG peptide. The VGVAPG peptide decreased the catalase (Cat) protein expression only after 24 h, whereas CCBs did not affect the expression of Cat induced by the VGVAPG peptide. The VGVAPG peptide increased the expression of the superoxide dismutase 1 (Sod1) protein. After 24 h of exposure, Nifedipine and Verapamil potentiated the increase in the Sod1 protein expression. Finally, our data showed that VGVAPG did not change the level of estradiol (E2) in the astrocytes. Interestingly, Nifedipine and Verapamil in co-treatment with VGVAPG increased the E2 level. Summarizing, it can be assumed that increased amounts of the VGVAPG during lifetime can play a certain role in calcium channel functioning in neurodegenerative diseases.


Assuntos
Elastina , Neuroblastoma , Animais , Astrócitos/metabolismo , Bloqueadores dos Canais de Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Maleato de Dizocilpina/farmacologia , Elastina/química , Elastina/metabolismo , Elastina/farmacologia , Humanos , Inflamação/metabolismo , Camundongos , Neuroblastoma/metabolismo , Nifedipino/metabolismo , Nifedipino/farmacologia , Oligopeptídeos , PPAR gama/metabolismo , Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/metabolismo , Verapamil/metabolismo , Verapamil/farmacologia
12.
Nutrients ; 14(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35458131

RESUMO

Pre-exercise caffeine and guarana-based multi-ingredient supplement (MS) consumption may be more effective for physical performance improvement than caffeine and guarana alone due to the synergistic effect of biologically active ingredients in multi-ingredient supplements. This study aimed to examine the acute effect of MS on the reactive agility and jump performance in recreational handball male players. A randomized, double-blind, crossover study involved twenty-four male handball players (body mass 74.6 ± 8.8 kg; body height 179 ± 7 cm; age 23.8 ± 1.4 years). Participants were tested under three conditions: placebo, caffeine + guarana (CAF + GUA), or MS ingestion 45 min before exercise tests. Participants performed a reactive agility test (Y-shaped test) and countermovement jump (CMJ). None of the supplements improved countermovement jump height (p = 0.06). The time needed to complete the agility test was significantly (p = 0.02) shorter in the MS condition than in the placebo. The differences in agility between PL vs. CAF + GUA and MS vs. CAF + GUA conditions were not statistically significant (p = 0.88 and p = 0.07, respectively). The results of this study indicate that the caffeine-based multi-ingredient performance was effective in improvement in reactive agility but not in jump height in recreational handball male players. A similar effect was not observed with CAF + GUA ingestion alone.


Assuntos
Desempenho Atlético , Cafeína , Adulto , Estatura , Cafeína/farmacologia , Estudos Cross-Over , Teste de Esforço , Humanos , Masculino , Adulto Jovem
13.
Toxicol Res ; 38(2): 175-186, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35415080

RESUMO

The increasing number of depression cases leads to a greater need for new antidepressant treatment development. It is postulated that antidepressants may harm male fertility, but the cellular mechanism is still poorly understood. The role of growth factors and klotho protein in maintaining normal male reproductive function is well documented. Hence, the study aimed to investigate the effect of the antidepressant drug - imipramine (tricyclic AD), and other substances with antidepressant potential (ALS), administered in combination or in combination with LPS (an animal model of depression) on gene expression and protein synthesis of IGF-2 (insulin-like growth factor 2), TGF-ß1 (transforming growth factor ß1), NGF (nerve growth factor), KGF (keratinocyte growth factor) and protein synthesis of VEGF-A (vascular endothelial growth factor A), IGF-IR (insulin-like growth factor receptor 1), EGFR (epidermal growth factor receptor) and klotho in the testis of mice. Mice were injected intraperitoneally with selected ALS and LPS or 10% DMSO (controls) (n = 7/group) once a day for 14 days. Animals were decapitated and testes collected for RNA and protein purification. PCR and western blot methods were employed for the evaluation of growth factors and klotho expression. The results obtained indicated a decreased level of most of the analyzed genes and proteins, except KGF; its expression increased after treatment with MTEP and IMI administrated individually and after NS-398, and IMI in combination with LPS. Our results may suggest that the tested ALS and LPS can contribute to a reduction of male fertility, but NS-398, IMI, and IMI+NS-398 may also act as stimulants after LPS.

14.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34769286

RESUMO

The incidence of depression among humans is growing worldwide, and so is the use of antidepressants. However, our fundamental understanding regarding the mechanisms by which these drugs function and their off-target effects against human sexuality remains poorly defined. The present study aimed to determine their differential toxicity on mouse spermatogenic cells and provide mechanistic data of cell-specific response to antidepressant and neuroleptic drug treatment. To directly test reprotoxicity, the spermatogenic cells (GC-1 spg and GC-2 spd cells) were incubated for 48 and 96 h with amitriptyline (hydrochloride) (AMI), escitalopram (ESC), fluoxetine (hydrochloride) (FLU), imipramine (hydrochloride) (IMI), mirtazapine (MIR), olanzapine (OLZ), reboxetine (mesylate) (REB), and venlafaxine (hydrochloride) (VEN), and several cellular and biochemical features were assessed. Obtained results reveal that all investigated substances showed considerable reprotoxic potency leading to micronuclei formation, which, in turn, resulted in upregulation of telomeric binding factor (TRF1/TRF2) protein expression. The TRF-based response was strictly dependent on p53/p21 signaling and was followed by irreversible G2/M cell cycle arrest and finally initiation of apoptotic cell death. In conclusion, our findings suggest that antidepressants promote a telomere-focused DNA damage response in germ cell lines, which broadens the established view of antidepressants' and neuroleptic drugs' toxicity and points to the need for further research in this topic with the use of in vivo models and human samples.


Assuntos
Antidepressivos/toxicidade , Antipsicóticos/toxicidade , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Espermatogênese/efeitos dos fármacos , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Amitriptilina/toxicidade , Animais , Linhagem Celular , Escitalopram/toxicidade , Fluoxetina/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Imipramina/toxicidade , Masculino , Camundongos , Mirtazapina/toxicidade , Modelos Biológicos , Olanzapina/toxicidade , Especificidade de Órgãos , Reboxetina/toxicidade , Reprodução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Cloridrato de Venlafaxina/toxicidade
15.
Acta Histochem ; 123(3): 151685, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33556704

RESUMO

Insulin-like growth factor (IGF-1) affects almost all cells in the body. Extremely important functions of this growth factor have been demonstrated in the brain and the reproductive system of both, females and males. Also, it is considered as a pro-inflammatory cytokine adjusting tissue homeostasis. However, it seems to play a special role in the male reproductive system and it may be disturbed by the application of antidepressants with different mechanisms of drug action during therapy. To date, the effect of antidepressant-like substances (ALS) on the course of physiological processes in male testicular cells is poorly understood. Therefore, the purpose of the research was to determine the presence, localizationof IGF-1R (insulin-like growth factor 1 ß receptor) and mRNA gene expression of IGF-1R and IGF-1 after administration of 3-[(2-methyl-1,3-tiazol-4-yl)ethynyl]-pyridine (MTEP) and N-[2-(Cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) in the different scheme in the testis of mice. Imipramine was used as a reference drug having a documented interaction with the mGluR5 receptors. The immunohistochemical analyses showed the localization of IGF-1R in Sertoli, Leydig, and germinal cells after all used substances. Differences in receptor localization were observed depending on the drugs applied and the type of analyzed cells. In contrast, there was a significant increase in IGF-1 gene expression after IMI + NS-398 and in IGF-1R after MTEP + NS-398 and IMI + NS-398 administration. It can, therefore, be assumed that the use of a combination of NS-398 with some ALS may run different mechanisms of action and affect the regulation of reproductive function in mouse testis through maintaining homeostasis at the molecular and immunological levels related to IGF.


Assuntos
Antidepressivos/farmacologia , Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Testículo/metabolismo , Animais , Modelos Animais de Doenças , Fator de Crescimento Insulin-Like I/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
16.
Cells ; 9(5)2020 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429346

RESUMO

Neuroinflammation is defined as the activation of the brain's innate immune system in response to an inflammatory challenge and is considered to be a prominent feature of neurodegenerative diseases. The contribution of overactivated neuroglial cells to neuroinflammation and neurodegenerative disorders is well documented, however, the role of hippocampal neurons in the neuroinflammatory process remains fragmentary. In this study, we show for the first time, that klotho acts as a signal transducer between pro-survival and pro-apoptotic crosstalk mediated by ER stress in HT-22 hippocampal neuronal cells during LPS challenge. In control HT-22 cells, LPS treatment results in activation of the IRE1α-p38 MAPK pathway leading to increased secretion of anti-inflammatory IL-10, and thus, providing adaptation mechanism. On the other hand, in klotho-deficient HT-22 cells, LPS induces oxi-nitrosative stress and genomic instability associated with telomere dysfunctions leading to p53/p21-mediated cell cycle arrest and, in consequence, to ER stress, inflammation as well as of apoptotic cell death. Therefore, these results indicate that klotho serves as a part of the cellular defense mechanism engaged in the protection of neuronal cells against LPS-mediated neuroinflammation, emerging issues linked with neurodegenerative disorders.


Assuntos
Encéfalo/patologia , Glucuronidase/metabolismo , Sistema Imunitário/patologia , Lipopolissacarídeos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , DNA/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inativação Gênica , Hipocampo/patologia , Homeostase/efeitos dos fármacos , Inflamação/imunologia , Inflamação/patologia , Proteínas Klotho , Camundongos , Minerais/metabolismo , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxirredução/efeitos dos fármacos , Telômero/metabolismo
17.
Cells ; 9(2)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31972978

RESUMO

Immunosenescence in monocytes has been shown to be associated with several biochemical and functional changes, including development of senescence-associated secretory phenotype (SASP), which may be inhibited by klotho protein. To date, it was believed that SASP activation is associated with accumulating DNA damage. However, some literature data suggest that endoplasmic reticulum and Golgi stress pathways may be involved in SASP development. Thus, the aim of this study was to investigate the role of klotho protein in the regulation of immunosenescence-associated Golgi apparatus and ER stress response induced by bacterial antigens in monocytes. We provide evidence that initiation of immunosenescent-like phenotype in monocytes is accompanied by activation of CREB34L and TFE3 Golgi stress response and ATF6 and IRE1 endoplasmic reticulum stress response, while klotho overexpression prevents these changes. Further, these changes are followed by upregulated secretion of proinflammatory cytokines, which final modification takes place exclusively in the Golgi apparatus. In conclusion, we provide for the first time evidence of klotho involvement in the crosstalk on the line ER-Golgi, which may, in turn, affect activation of SASP. This data may be useful for a novel potential target for therapy in age-related and chronic inflammatory conditions.


Assuntos
Anti-Inflamatórios/uso terapêutico , Senescência Celular , Estresse do Retículo Endoplasmático , Glucuronidase/metabolismo , Complexo de Golgi/metabolismo , Monócitos/patologia , Anti-Inflamatórios/farmacologia , Senescência Celular/efeitos dos fármacos , Citocinas/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Humanos , Proteínas Klotho , Lipopolissacarídeos , Monócitos/efeitos dos fármacos
18.
Apoptosis ; 25(1-2): 57-72, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31732843

RESUMO

In the previous paper of our group, we have demonstrated that one of the crucial factors involved in the crosstalk between autophagy and apoptosis is klotho protein. We have shown that klotho silencing in normal human fibroblasts intensifies lipopolysaccharide (LPS)-induced p-eIF2a-mediated stress of endoplasmic reticulum and thus leads to retardation of prosurvival autophagy and induction of apoptotic cell death. In this study, we have performed a detailed step-by-step analysis of autophagy flux-related genes' expression and endoplasmic reticulum and Golgi stress related pathways in order to determine the exact mechanistic event when autophagy is inhibited in klotho-deficient cells on account of apoptosis initiation. We provide evidence that klotho-silencing in LPS-treated cells results in differential course of ER- and Golgi-mediated stress response. Further, we show that in klotho-deficient cells formation of ULK1 complex is inhibited and thus autophagy initiation is blocked on the account of apoptosis activation, while in the control cells cytoprotective autophagy is activated. Finally, in klotho-deficient cells formation of ULK1 complex is prevented by downregulated expression of Atg13. Thus, this study suggests a novel targeting pathway for efficient elimination of autophagy-deficient cells.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Estresse do Retículo Endoplasmático , Fibroblastos/metabolismo , Glucuronidase/metabolismo , Complexo de Golgi/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Fibroblastos/citologia , Glucuronidase/genética , Complexo de Golgi/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Klotho , Ligação Proteica , Transdução de Sinais
19.
Cell Tissue Res ; 379(3): 613-624, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31705214

RESUMO

The European bison is still an animal endangered with extinction, so by learning factors that regulate its reproduction, we can contribute to the survival of this species. On the other hand, autophagy is a dynamic, lisosomal, and evolutionary conserved process which is essential for animal cell survival, homeostasis, and differentiation. This process was demonstrated in many species and in many organs; however, information on the metabolic course of autophagy in the male reproductive system in seasonally reproducing species is lacking. Therefore, in this study, we examined for the first time several autophagy-related factors (mTOR, ULK1, Atg13, PI3K, beclin1, beclin2, Atg14, Atg5, Atg16L, LC3) in testicular and epididymal tissues obtained from adult male individuals of the European bison. We compared the level of gene expression, protein synthesis, and localization of autophagy-related factors between June, September, and December (before, during, and after reproductive activity, respectively). We confirmed that the induction of autophagy was at the highest level in the period after reproductive activity, i.e., in December, when a significant increase in the gene and protein expression was observed for the majority of these factors, probably to ensure cellular protection. However, autophagy was also clearly marked in September, during the intense spermatogenesis, and this may indicate a great demand for autophagy-related proteins required for the normal development of reproductive cells. Obtained results seem to confirm that autophagy pathway, as a consequence of seasonal reproduction, may control the normal course of spermatogenesis in the male European bison.


Assuntos
Epididimo/citologia , Testículo/citologia , Animais , Autofagia/fisiologia , Bison , Epididimo/metabolismo , Masculino , Estações do Ano , Testículo/metabolismo
20.
Apoptosis ; 24(9-10): 773-784, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31278507

RESUMO

Depression is a serious medical condition, typically treated by antidepressants. Conventional monotherapy can be effective only in 60-80% of patients, thus modern psychiatry deals with the challenge of new methods development. At the same moment, interactions between antidepressants and the occurrence of potential side effects raise serious concerns, which are even more exacerbated by the lack of relevant data on exact molecular mechanisms. Therefore, the aims of the study were to provide up-to-date information on the relative mechanisms of action of single antidepressants and their combinations. In this study, we evaluated the effect of single and combined antidepressants administration on mouse hippocampal neurons after 48 and 96 h in terms of cellular and biochemical features in vitro. We show for the first time that co-treatment with amitriptyline/imipramine + fluoxetine initiates in cells adaptation mechanisms which allow cells to adjust to stress and finally exerts less toxic events than in cells treated with single antidepressants. Antidepressants treatment induces in neuronal cells oxidative and nitrosative stress, which leads to micronuclei and double-strand DNA brakes formation. At this point, two different mechanistic events are initiated in cells treated with single and combined antidepressants. Single antidepressants (amitriptyline, imipramine or fluoxetine) activate cell cycle arrest resulting in proliferation inhibition. On the other hand, treatment with combined antidepressants (amitriptyline/imipramine + fluoxetine) initiates p16-dependent cell cycle arrest, overexpression of telomere maintenance proteins and finally restoration of proliferation. In conclusion, our findings may pave the way to better understanding of the stress-related effects on neurons associated with mono- and combined therapy with antidepressants.


Assuntos
Antidepressivos , Depressão/tratamento farmacológico , Neurônios/efeitos dos fármacos , Amitriptilina/farmacologia , Amitriptilina/toxicidade , Animais , Antidepressivos/farmacologia , Antidepressivos/toxicidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fluoxetina/farmacologia , Fluoxetina/toxicidade , Hipocampo/citologia , Imipramina/farmacologia , Imipramina/toxicidade , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...