Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chem Asian J ; 18(18): e202300531, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37537516

RESUMO

The palladium-catalyzed reaction of aromatic amides with maleimides results in the formation of a double C-H bond activation product, which occurs at both the benzylic and meta positions. Computational chemistry studies suggest that the first C-H bond activation unfolds via a six-membered palladacycle, maleimide insertion, protonation of the Pd-N bond, and then activation of the meta C-H bond. The process concludes with reductive elimination, producing an annulation product. The energy decomposition analysis (EDA) showed that the deformation energy favors the ortho C-H bond activation process. However, this route is non-productive. The interaction energy controls the site where the maleimide is inserted into the Pd-C(sp3 ) bond, which determines its site selectivity. The energetic span model indicates that the meta C-H bond activation step is the one that determines the turnover frequency. Regarding the directing group, it has been concluded that the strong Pd-S bonding and the destabilizing effect of the deformation energy allow the 2-thiomethylphenyl to function effectively as a directing group.

2.
J Comput Chem ; 44(32): 2486-2500, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37650712

RESUMO

The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic-scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n(FeS2 ) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe(II) sites that are connected via a range of persulfide (S2 2- ) ligation. In addition to the specific maquettes with n = 8, 18, and 32 FeS2 units, we established guidelines for obtaining low-energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano-reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron-transfer reactions can occur.

3.
J Inorg Biochem ; 246: 112292, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354604

RESUMO

The rational structural and computational studies of a blue copper protein, pseudoazurin (PAz), and its Met16X (X = Phe, Leu, Val, Ile) variants gave clear functional meanings of the noncovalent interaction (NCI) through the second coordination sphere. The high-resolution X-ray crystal structures of Met16X PAz demonstrated that the active site geometry is significantly affected by the substitution of Met16, which is located within the NCI distance from the His81 imidazole ring at the copper active site. The computational chemistry calculations based on the crystal structure analyses confirmed that the NCI of S-π/CH-π (wild-type), π-π (Met16Phe), double CH-π (Met16Leu), and single CH-π (Met16Val and Met16Ile). The estimated interaction energies for the NCI demonstrated that the fine-tuning of the protein stability and Cu site properties form the second coordination sphere of PAz.


Assuntos
Azurina , Cobre , Cobre/química , Modelos Moleculares , Azurina/química , Azurina/metabolismo , Domínio Catalítico , Cristalografia por Raios X
4.
J Org Chem ; 87(1): 737-743, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34962397

RESUMO

The rhodium(I)-catalyzed reaction of N-8-aminoquinolinyl aromatic amides with maleimides results in C-H alkylation at the ortho position of the amide. The reaction path and formation of the alkylation product with density functional theory (DFT) calculations were done. The detailed computational study showed that the reaction proceeds in the following steps: (I) deprotonation of the NH amide proton, (II) oxidative addition of the ortho C-H bond, (III) migratory insertion of the maleimide, (IV) reductive elimination with the C-C bond formation, and (V) protonation. The energetic span model showed that the turnover frequency (TOF)-determining transition state (TDTS) is the oxidative addition, while the TOF-determining intermediate (TDI) is the formation of an Rh(I)-complex after N-H deprotonation. It was also found that the change in the oxidation number of the Rh catalyst is a key determinant of the reaction path.

5.
Inorg Chem ; 57(12): 7151-7167, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29874059

RESUMO

A procedure is developed for defining a compositionally and structurally realistic, atomic-scale description of exfoliated clay nanoparticles from the kaolinite family of phylloaluminosilicates. By use of coordination chemical principles, chemical environments within a nanoparticle can be separated into inner, outer, and peripheral spheres. The edges of the molecular models of nanoparticles were protonated in a validated manner to achieve charge neutrality. Structural optimizations using semiempirical methods (NDDO Hamiltonians and DFTB formalism) and ab initio density functionals with a saturated basis set revealed previously overlooked molecular origins of morphological changes as a result of exfoliation. While the use of semiempirical methods is desirable for the treatment of nanoparticles composed of tens of thousands of atoms, the structural accuracy is rather modest in comparison to DFT methods. We report a comparative survey of our infrared data for untreated crystalline and various exfoliated states of kaolinite and halloysite. Given the limited availability of experimental techniques for providing direct structural information about nano-kaolinite, the vibrational spectra can be considered as an essential tool for validating structural models. The comparison of experimental and calculated stretching and bending frequencies further justified the use of the preferred level of theory. Overall, an optimal molecular model of the defect-free, ideal nano-kaolinite can be composed with respect to stationary structure and curvature of the potential energy surface using the PW91/SVP level of theory with empirical dispersion correction (PW91+D) and polarizable continuum solvation model (PCM) without the need for a scaled quantum chemical force field. This validated theoretical approach is essential in order to follow the formation of exfoliated clays and their surface reactivity that is experimentally unattainable.

6.
Langmuir ; 33(14): 3534-3547, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28290695

RESUMO

Surface modifications fundamentally influence the morphology of kaolinite nanostructures as a function of crystallinity and the presence of contaminants. Besides morphology, the catalytic properties of 1:1-type exfoliated aluminosilicates are also influenced by the presence of defect sites that can be generated in a controlled manner by mechanochemical activation. In this work, we investigated exfoliated halloysite nanoparticles with a quasi-homogeneous, scroll-type secondary structure toward developing structural/functional relationships for composition, atomic structure, and morphology. The surface properties of thin-walled nanoscrolls were studied as a function of mechanochemical activation expressed by the duration of dry-grinding. The surface characterizations were carried out using N2, NH3, and CO2 adsorption measurements. The effects of grinding on the nanohalloysite structure were followed using thermoanalytical thermogravimetric/derivative thermogravimetric (TG/DTG) and infrared spectroscopic [Fourier transform infrared/attenuated total reflection (FTIR/ATR)] techniques. Grinding results in partial dehydroxylation with similar changes as those observed for heat treatment above 300 °C. Mechanochemical activation shows a decrease in the dehydroxylation mass loss and the DTG peak temperature, a decrease in the specific surface area and the number of mesopores, an increase in the surface acidity, blue shift of surface hydroxide bands, and a decrease in the intensity of FTIR/ATR bands as a function of the grinding time. The experimental observations were used to guide atomic-scale structural and energetic simulations using realistic molecular cluster models for a nanohalloysite particle. A full potential energy surface description was developed for the mechanochemical activation and/or heating toward nanometahalloysite formation that aids the interpretation of experimental results. The calculated differences upon dehydroxylation show a remarkable agreement with the mass loss values from DTG measurements.

7.
Dalton Trans ; 45(6): 2523-35, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26705545

RESUMO

The chemical and physical properties, and thus the reactivity of phylloaluminosilicates can be tailored by intercalation, delamination, and exfoliation processes. In going from the periodic crystalline to the molecular exfoliated phase, surface defects and modifications gain importance as each face of the phylloaluminosilicate comes in direct contact with the external chemical environment. In this work, we extend our earlier studies on the molecular cluster modelling of exfoliated kaolinite sheets by evaluating the positions and orientations of surface hydroxide groups and bridging oxide anions, as the sites of reactivity. The previous focus on the inner chemical environment of a single kaolinite layer is shifted to the surface exposed octahedral aluminium-hydroxide and tetrahedral silicon-oxide sheets. The combination of semi-empirical, ab initio wave function, and density functional calculations unanimously support the amphoteric nature of the surface hydroxide groups with respect to H-bonding donor/acceptor capabilities. To a lesser extent, we observe the same for the bridging oxide anions. This is in contrast to the crystalline phase, which manifests only donor orientation for maintaining an inter-layer H-bond network. These results suggest that both electrophilic and nucleophilic characteristics of the octahedral and tetrahedral sheets need to be considered during intercalation and concomitant exfoliation of the kaolinite sheets.

8.
Phys Chem Chem Phys ; 16(47): 25830-9, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25351577

RESUMO

Kaolinite as a remarkable industrial raw material has notable structural features despite its simple chemical composition (Al2O3·2SiO2·2H2O). We report here a systematic development of a coordination chemical model for the [6Al-6(OH)] honeycomb-like unit of kaolinite's octahedral sheet, which was proposed to be the adsorption site for small molecules from earlier studies. The coordination environment of the Al(3+) ions was completed with outer sphere groups from both octahedral and tetrahedral sheets. Dangling bonds were terminated by additional Al(3+) and Si(4+) ions with hydroxide and oxide groups from the second coordination sphere versus simple protonation. A cage of Na(+) and Mg(2+) ions rendered the computational model to be charge neutral. In this exfoliated kaolinite model, the inner hydroxide groups and the adjacent Al(3+) ions have compositionally the most complete environments with respect to the crystal structure. Thus, their atomic positions were used as a benchmark for the level of theory dependence of the optimized structures. We evaluated the performance of a representative set of density functionals, basis sets, point-charges, identified pitfalls and caveats. Importantly, the structural changes during optimization of periodic and cluster models suggest pliability for the exfoliated kaolinite layers, which is influenced by the external chemical environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...