Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0293834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917788

RESUMO

Sugarcane is one of the major agricultural crops with high economic importance in Thailand. Periodic waterlogging has a long-term negative effect on sugarcane development, soil properties, and microbial diversity, impacting overall sugarcane production. Yet, the microbial structure in periodically waterlogged sugarcane fields across soil compartments and growth stages in Thailand has not been documented. This study investigated soil and rhizosphere microbial communities in a periodic waterlogged field in comparison with a normal field in a sugarcane plantation in Ratchaburi, Thailand, using 16S rRNA and ITS amplicon sequencing. Alpha diversity analysis revealed comparable values in periodic waterlogged and normal fields across all growth stages, while beta diversity analysis highlighted distinct microbial community profiles in both fields throughout the growth stages. In the periodic waterlogged field, the relative abundance of Chloroflexi, Actinobacteria, and Basidiomycota increased, while Acidobacteria and Ascomycota decreased. Beneficial microbes such as Arthrobacter, Azoarcus, Bacillus, Paenibacillus, Pseudomonas, and Streptomyces thrived in the normal field, potentially serving as biomarkers for favorable soil conditions. Conversely, phytopathogens and growth-inhibiting bacteria were prevalent in the periodic waterlogged field, indicating unfavorable conditions. The co-occurrence network in rhizosphere of the normal field had the highest complexity, implying increased sharing of resources among microorganisms and enhanced soil biological fertility. Altogether, this study demonstrated that the periodic waterlogged field had a long-term negative effect on the soil microbial community which is a key determining factor of sugarcane growth.


Assuntos
Microbiota , Saccharum , Solo/química , Saccharum/genética , RNA Ribossômico 16S/genética , Tailândia , Bactérias/genética , Microbiota/genética , Grão Comestível/genética , Microbiologia do Solo , Rizosfera
2.
PLoS One ; 18(2): e0281505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36749783

RESUMO

A novel methylotrophic bacterium designated as NMS14P was isolated from the root of an organic coffee plant (Coffea arabica) in Thailand. The 16S rRNA sequence analysis revealed that this new isolate belongs to the genus Methylobacterium, and its novelty was clarified by genomic and comparative genomic analyses, in which NMS14P exhibited low levels of relatedness with other Methylobacterium-type strains. NMS14P genome consists of a 6,268,579 bp chromosome, accompanied by a 542,519 bp megaplasmid and a 66,590 bp plasmid, namely pNMS14P1 and pNMS14P2, respectively. Several genes conferring plant growth promotion are aggregated on both chromosome and plasmids, including phosphate solubilization, indole-3-acetic acid (IAA) biosynthesis, cytokinins (CKs) production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, sulfur-oxidizing activity, trehalose synthesis, and urea metabolism. Furthermore, pangenome analysis showed that NMS14P possessed the highest number of strain-specific genes accounting for 1408 genes, particularly those that are essential for colonization and survival in a wide array of host environments, such as ABC transporter, chemotaxis, quorum sensing, biofilm formation, and biosynthesis of secondary metabolites. In vivo tests have supported that NMS14P significantly promoted the growth and development of maize, chili, and sugarcane. Collectively, NMS14P is proposed as a novel plant growth-promoting Methylobacterium that could potentially be applied to a broad range of host plants as Methylobacterium-based biofertilizers to reduce and ultimately substitute the use of synthetic agrochemicals for sustainable agriculture.


Assuntos
Methylobacterium , Saccharum , Zea mays/genética , Saccharum/genética , Methylobacterium/genética , RNA Ribossômico 16S/genética , Grão Comestível/genética , Filogenia
3.
Front Microbiol ; 12: 623799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828538

RESUMO

Converting conventional farms to organic systems to improve ecosystem health is an emerging trend in recent decades, yet little is explored to what extent and how this process drives the taxonomic diversity and functional capacity of above-ground microbes. This study was, therefore, conducted to investigate the effects of agricultural management, i.e., organic, transition, and conventional, on the structure and function of sugarcane phyllosphere microbial community using the shotgun metagenomics approach. Comparative metagenome analysis exhibited that farming practices strongly influenced taxonomic and functional diversities, as well as co-occurrence interactions of phyllosphere microbes. A complex microbial network with the highest connectivity was observed in organic farming, indicating strong resilient capabilities of its microbial community to cope with the dynamic environmental stressors. Organic farming also harbored genus Streptomyces as the potential keystone species and plant growth-promoting bacteria as microbial signatures, including Mesorhizobium loti, Bradyrhizobium sp. SG09, Lactobacillus plantarum, and Bacillus cellulosilyticus. Interestingly, numerous toxic compound-degrading species were specifically enriched in transition farming, which might suggest their essential roles in the transformation of conventional to organic farming. Moreover, conventional practice diminished the abundance of genes related to cell motility and energy metabolism of phyllosphere microbes, which could negatively contribute to lower microbial diversity in this habitat. Altogether, our results demonstrated the response of sugarcane-associated phyllosphere microbiota to specific agricultural managements that played vital roles in sustainable sugarcane production.

4.
Fungal Biol ; 122(2-3): 156-171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29458719

RESUMO

The quality of Beauveria bassiana conidia directly affects the virulence against insects. In this study, continuous subculturing of B. bassiana on both rice grains and potato dextrose agar (PDA) resulted in 55 and 49 % conidial yield reduction after 12 passages and 68 and 60 % virulence reduction after 20 and 12 passages at four d post-inoculation, respectively. The passage through Tenebrio molitor and Spodoptera exigua restored the virulence of rice and PDA subcultures, respectively. To explore the molecular mechanisms underlying the conidial quality and the decline of virulence after multiple subculturing, we investigated the conidial proteomic changes. Successive subculturing markedly increased the protein levels in oxidative stress response, autophagy, amino acid homeostasis, and apoptosis, but decreased the protein levels in DNA repair, ribosome biogenesis, energy metabolism, and virulence. The nitro blue tetrazolium assay verified that the late subculture's colony and conidia had a higher oxidative stress level than the early subculture. A 2A-type protein phosphatase and a Pleckstrin homology domain protein Slm1, effector proteins of the target of rapamycin (TOR) complex 1 and 2, respectively, were dramatically increased in the late subculture. These results suggest that TOR signalling might be associated with ageing in B. bassiana late subculture, in turn affecting its physiological characteristics and virulence.


Assuntos
Beauveria/patogenicidade , Proteômica/métodos , Esporos Fúngicos/patogenicidade , Animais , Autofagia , Beauveria/química , Beauveria/crescimento & desenvolvimento , Ritmo Circadiano , Replicação do DNA , Estresse Oxidativo , Fenótipo , Transdução de Sinais/fisiologia , Spodoptera , Esporos Fúngicos/química , Serina-Treonina Quinases TOR/fisiologia , Virulência
5.
AMB Express ; 4: 52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25006541

RESUMO

Anhydromevalonolactone (AMVL) is a bioactive natural product that arises from a molecular biology technique using Aspergillus oryzae as a heterologous host. AMVL has been used as a precursor for the synthesis of insect pest control reagents and has numerous applications in the biotechnological and medical industries. In this study, the Plackett-Burman Design and the Central Composite Design, which offer efficient and feasible approaches, were complemented to screen significant parameters and identify the optimal values for maximum AMVL production. The results suggested that sucrose, NaNO3, yeast extract and K2HPO4 were the key factors affecting AMVL production in a complex medium, whereas the major components required for a defined medium were NaNO3, K2HPO4, KH2PO4 and trace elements. These factors were subsequently optimized using the response surface methodology. Under optimal conditions, a maximum AMVL production of 250 mg/L in the complex medium and 200 mg/L in the defined medium was achieved, which represents an increase of approximately 3-4-fold compared to the commonly used malt extract medium.

6.
Fungal Genet Biol ; 50: 55-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23174282

RESUMO

Fungi from the genus Xylaria produce a wide range of polyketides with diverse structures, which provide important sources for pharmaceutical agents. At least seven polyketide synthase (PKS) genes, including pksmt, were found in Xylaria sp. BCC 1067. The multifunctional enzyme pksmt contains the following catalytic motifs: ß-ketosynthase (KS), acyltransferase (AT), dehydratase (DH), methyltransferase (MT), enoylreductase (ER), ketoreductase (KR), and acyl carrier region (ACP). The presence of multiple domains indicated that pksmt was an iterative type I highly-reduced-type PKS gene. To identify the gene function, pksmt was fused with a gene encoding green fluorescent protein (GFP) and introduced into a surrogate host, Aspergillus oryzae, and expressed under the control of a constitutive gpdA promoter. In the transformant, the pksmt gene was functionally expressed and translated as detected by a green fluorescence signal. This transformant produced two new 2-pyrone compounds, 4-(hydroxymethyl)-5,6-dihydro-pyran-2-one and 5-hydroxy-4-methyl-5,6-dihydro-pyran-2-one, as well as a previously identified 4-methyl-5,6-dihydro-pyran-2-one. Our results suggested that pksmt from Xylaria sp. BCC 1067 represents a family of fungal PKSs that can synthesize 2-pyrone-containing compounds.


Assuntos
Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Expressão Gênica , Engenharia Metabólica , Policetídeo Sintases/metabolismo , Pironas/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Policetídeo Sintases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Xylariales/enzimologia , Xylariales/genética
7.
Chembiochem ; 13(6): 895-903, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22438295

RESUMO

A gene from Xylaria sp. BCC 1067, pks3, that encodes a putative 3660-residue hybrid polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) was characterised by targeted gene disruption in combination with comprehensive product identification. Studies of the features of a corresponding mutant, YA3, allowed us to demonstrate that pks3 is responsible for the synthesis of a new pyrroline compound, named xyrrolin, in the wild-type Xylaria sp. BCC 1067. The structure of xyrrolin was established by extensive spectroscopic and spectrometric analyses, including low- and high-resolution MS, IR, (1)H NMR, (13)C NMR, (13)C NMR with Dept135, HMQC 2D NMR, HMBC 2D NMR and COSY 2D NMR. On the basis of the Pks3 domain organisation and the chemical structure of xyrrolin, we proposed that biosynthesis of this compound requires the condensation of a tetraketide and an L-serine unit, followed by Dieckmann or reductive cyclisation and enzymatic removal of ketone residue(s). Bioassays of the pure xyrrolin further displayed cytotoxicity against an oral cavity (KB) cancer cell line.


Assuntos
Antineoplásicos/metabolismo , Pirróis/metabolismo , Xylariales/metabolismo , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Humanos , Dados de Sequência Molecular , Peptídeo Sintases/biossíntese , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Policetídeo Sintases/biossíntese , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Engenharia de Proteínas/métodos , Pirróis/farmacologia , Análise Espectral , Xylariales/química , Xylariales/genética
8.
Microbiology (Reading) ; 154(Pt 4): 995-1006, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18375793

RESUMO

Intensive study of gene diversity of bioactive compounds in a wood-rot fungus, Xylaria sp. BCC1067, has made it possible to identify polyketides and nonribosomal peptides (NRPs) unaccounted for by conventional chemical screening methods. Here we report the complete nonribosomal peptide synthetase (NRPS) gene responsible for the biosynthesis of an NRP, bassianolide, using a genetic approach. Isolation of the bassianolide biosynthetic gene, nrpsxy, was achieved using degenerate primers specific to the adenylation domain of NRPS. The complete ORF of nrpsxy is 10.6 kb in length. Based on comparisons with other known NRPSs, the domain arrangement of NRPSXY is most likely to be C-A-T-C-A-M-T-T-C-R. The other ORF found upstream of nrpsxy, designated efxy, is 1.8 kb in length and shows high similarity to members of the major facilitator superfamily of transporters. Functional analysis of the nrpsxy gene was conducted by gene disruption, and the missing metabolite in the mutant was identified. Chemical analysis revealed the structure of the metabolite to be a cyclooctadepsipeptide, bassianolide, which has been found in other fungi. A bioassay of bassianolide revealed a wide range of biological activities other than insecticidal uses, which have been previously reported, thus making bassianolide an interesting candidate for future structural modification. This study is the first evidence for a gene involved in the biosynthesis of bassianolide.


Assuntos
Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/metabolismo , Xylariales/enzimologia , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antituberculosos/isolamento & purificação , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Cromatografia Líquida de Alta Pressão , Primers do DNA/genética , DNA Fúngico/química , DNA Fúngico/genética , Deleção de Genes , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Insercional , Fases de Leitura Aberta , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Reação em Cadeia da Polimerase/métodos , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Madeira , Xylariales/genética
9.
FEMS Microbiol Lett ; 251(1): 125-36, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16112817

RESUMO

Fungal type I polyketide (PK) compounds are highly valuable for medical treatment and extremely diverse in structure, partly because of the enzymatic activities of reducing domains in polyketide synthases (PKSs). We have cloned several PKS genes from the fungus Xylaria sp. BCC 1067, which produces two polyketides: depudecin (reduced PK) and 19,20-epoxycytochalasin Q (PK-nonribosomal peptide (NRP) hybrid). Two new degenerate primer sets, KA-series and XKS, were designed to amplify reducing PKS and PKS-NRP synthetase hybrid genes, respectively. Five putative PKS genes were amplified in Xylaria using KA-series primers and two more with the XKS primers. All seven are predicted to encode proteins homologous to highly reduced (HR)-type PKSs. Previously designed primers in LC-, KS-, and MT-series identified four additional PKS gene fragments. Selected PKS fragments were used as probes to identify PKS genes from the genomic library of this fungus. Full-length sequences for five PKS genes were obtained: pks12, pks3, pksKA1, pksMT, and pksX1. They are structurally diverse with 1-9 putative introns and products ranging from 2162 to 3654 amino acids in length. The finding of 11 distinct PKS genes solely by means of PCR cloning supports that PKS genes are highly diverse in fungi. It also indicates that our KA-series primers can serve as powerful tools to reveal the genetic potential of fungi in production of multiple types of HR PKs, which the conventional compound screening could underestimate.


Assuntos
Ascomicetos/genética , Variação Genética , Policetídeo Sintases/genética , Polimorfismo Genético , Ascomicetos/enzimologia , Primers do DNA , DNA Fúngico/química , DNA Fúngico/genética , Proteínas Fúngicas/genética , Íntrons , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...