Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 173: 103909, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885923

RESUMO

In the filamentous fungus Aspergillus oryzae, large amounts of amylolytic enzymes are inducibly produced by isomaltose, which is converted from maltose incorporated via the maltose transporter MalP. In contrast, the preferred sugar glucose strongly represses the expression of both amylolytic and malP genes through carbon catabolite repression. Simultaneously, the addition of glucose triggers the endocytic degradation of MalP on the plasma membrane. In budding yeast, the signal-dependent ubiquitin modification of plasma membrane transporters leads to selective endocytosis into the vacuole for degradation. In addition, during glucose-induced MalP degradation, the homologous of E6AP C-terminus-type E3 ubiquitin ligase (HulA) is responsible for the ubiquitin modification of MalP, and the arrestin-like protein CreD is required for HulA targeting. Although CreD-mediated MalP internalization occurs in response to glucose, the mechanism by which CreD regulates HulA-dependent MalP ubiquitination remains unclear. In this study, we demonstrated that three (P/L)PxY motifs present in the CreD protein are essential for functioning as HulA adaptors so that HulA can recognize MalP in response to glucose stimulation, enabling MalP internalization. Furthermore, four lysine residues (three highly conserved among Aspergillus species and yeast and one conserved among Aspergillus species) of CreD were found to be necessary for its ubiquitination, resulting in efficient glucose-induced MalP endocytosis. The results of this study pave the way for elucidating the regulatory mechanism of MalP endocytic degradation through ubiquitination by the HulA-CreD complex at the molecular level.

2.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28455339

RESUMO

Aspergillusoryzae produces copious amount of amylolytic enzymes, and MalP, a major maltose permease, is required for the expression of amylase-encoding genes. The expression of these genes is strongly repressed by carbon catabolite repression (CCR) in the presence of glucose. MalP is transported from the plasma membrane to the vacuole by endocytosis, which requires the homolog of E6-AP carboxyl terminus ubiquitin ligase HulA, an ortholog of yeast Rsp5. In yeast, arrestin-like proteins mediate endocytosis as adaptors of Rsp5 and transporters. In the present study, we examined the involvement of CreD, an arrestin-like protein, in glucose-induced MalP endocytosis and CCR of amylase-encoding genes. Deletion of creD inhibited the glucose-induced endocytosis of MalP, and CreD showed physical interaction with HulA. Phosphorylation of CreD was detected by Western blotting, and two serine residues were determined as the putative phosphorylation sites. However, the phosphorylation state of the serine residues did not regulate MalP endocytosis and its interaction with HulA. Although α-amylase production was significantly repressed by creD deletion, both phosphorylation and dephosphorylation mimics of CreD had a negligible effect on α-amylase activity. Interestingly, dephosphorylation of CreD was required for CCR relief of amylase genes that was triggered by disruption of the deubiquitinating enzyme-encoding gene creB The α-amylase activity of the creB mutant was 1.6-fold higher than that of the wild type, and the dephosphorylation mimic of CreD further improved the α-amylase activity by 2.6-fold. These results indicate that a combination of the dephosphorylation mutation of CreD and creB disruption increased the production of amylolytic enzymes in A. oryzaeIMPORTANCE In eukaryotes, glucose induces carbon catabolite repression (CCR) and proteolytic degradation of plasma membrane transporters via endocytosis. Glucose-induced endocytosis of transporters is mediated by their ubiquitination, and arrestin-like proteins act as adaptors of transporters and ubiquitin ligases. In this study, we showed that CreD, an arrestin-like protein, is involved in glucose-induced endocytosis of maltose permease and carbon catabolite derepression of amylase gene expression in Aspergillusoryzae Dephosphorylation of CreD was required for CCR relief triggered by the disruption of creB, which encodes a deubiquitinating enzyme; a combination of the phosphorylation-defective mutation of CreD and creB disruption dramatically improved α-amylase production. This study shows the dual function of an arrestin-like protein and provides a novel approach for improving the production of amylolytic enzymes in A. oryzae.


Assuntos
Arrestina/metabolismo , Aspergillus oryzae/metabolismo , Repressão Catabólica , Endocitose , Proteínas Fúngicas/genética , Proteínas de Transporte de Monossacarídeos/genética , alfa-Amilases/genética , Arrestina/genética , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Carbono/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Fosforilação , Transporte Proteico , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...