Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(38): eadh9104, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37738353

RESUMO

Topological materials have received much attention because of their robust topological surface states, which can be potentially applied in electronics and catalysis. Here, we show that the topological insulator bismuth selenide functions as an efficient catalyst for the oxidative carbonylation of amines with carbon monoxide and dioxygen to synthesize urea derivatives. For example, the carbonylation of butylamine can be completed over bismuth selenide nanoparticle catalyst in 4 hours at 20°C with a yield of 99%, whereas most noble metal-based catalysts do not function at such a low temperature. Density functional theory calculations further reveal that the topological surface states facilitate the activation of dioxygen through a triplet-to-singlet spin-conversion reaction, in which active oxygen species are formed with a barrier of 0.4 electron volts for the subsequent reactions with amine and carbon monoxide.

2.
J Phys Chem B ; 127(30): 6636-6642, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37466988

RESUMO

Genomic information is essential for human health. Due to its large volume, genomic information can be potentially computed using quantum computers, which are rapidly developing. Genome analysis using quantum computers can accelerate the development of personalized medicine, innovative drugs, and novel diagnostics based on genomic information. However, genomic analysis, including nucleotide identification, has not yet been performed using quantum computers. Here, we demonstrate single-molecule identification of nucleotides using a quantum computer. We have designed a quantum gate that explains the single-molecule conductance of adenosine electronically bonded between electrodes. The quantum circuit consists of a reverse and an encoding quantum gate that can strongly distinguish adenosine among the four nucleotides. Our results are the first step toward the realization of genome analysis using quantum computers.


Assuntos
Adenosina , Nucleotídeos , Humanos , Computadores , Nanotecnologia/métodos , Eletrodos
3.
Sci Adv ; 9(19): eadg8202, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172082

RESUMO

Stacked teacups inspired the idea that columnar assemblies of stacked bowl-shaped molecules may exhibit a unique dynamic behavior, unlike usual assemblies of planar disc- and rod-shaped molecules. On the basis of the molecular design concept for creating higher-order discotic liquid crystals, found in our group, we synthesized a sumanene derivative with octyloxycarbonyl side chains. This molecule forms an ordered hexagonal columnar mesophase, but unexpectedly, the columnar assembly is very soft, similar to sugar syrup. It displays, upon application of a shear force on solid substrates, a flexible bending motion with continuous angle variations of bowl-stacked columns while preserving the two-dimensional hexagonal order. In general, alignment control of higher-order liquid crystals is difficult to achieve due to their high viscosity. The present system that brings together higher structural order and mechanical softness will spark interest in bowl-shaped molecules as a component for developing higher-order liquid crystals with unique mechanical and stimuli-responsive properties.

4.
J Am Chem Soc ; 144(4): 1523-1527, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35072454

RESUMO

The hydride ion (H-) is a unique anionic species that exhibits high reactivity and chemical energy. H- conductors are key materials to utilize advantages of H- for applications, such as chemical reactors and energy storage systems. However, low H- conductivity at room temperature (RT) in current H- conductors limit their applications. In this study, we report a H- conductivity of ∼1 mS cm-1 at RT, which is higher by 3 orders of magnitude than that of the best conductor, in lightly oxygen-doped lanthanum hydride, LaH3-2xOx with x < 0.25. The oxygen concentration (x) is crucial in achieving fast H- conduction near RT; the low activation barrier of 0.3-0.4 eV is attained for x < 0.25, above which it increases to 1.2-1.3 eV. Molecular dynamics simulations using neural-network potential successfully reproduced the observed activation energy, revealing the presence of mobile and immobile H-.

5.
J Phys Chem Lett ; 12(50): 12020-12025, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34898221

RESUMO

Strongly correlated electron systems, generally recognized as d- and f-electron systems, have attracted attention as a platform for the emergence of exotic properties such as high-Tc superconductivity. However, correlated electron behaviors have been recently observed in a group of novel materials, electrides, in which s-electrons are confined in subnanometer-sized spaces. Here, we present a trend of electronic correlation of electrides by evaluating the electronic correlation strength obtained from model parameters characterizing effective Hamiltonians of 19 electrides from first principles. The calculated strengths vary in the order 0D ≫ 1D > 2D ∼ 3D electrides, which corresponds to experimental trends, and exceed 10 (a measure for the emergence of exotic properties) in all of the 0D and some of the 1D electrides. We also found the electronic correlation depends on the cation species surrounding the s-electrons. The results indicate that low-dimensional electrides will be new research targets for studies of strongly correlated electron systems.

6.
Chem Sci ; 12(32): 10871-10877, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34476066

RESUMO

Control of charge carriers that transport through the molecular junctions is essential for thermoelectric materials. In general, the charge carrier depends on the dominant conduction orbitals and is dominantly determined by the terminal anchor groups. The present study discloses the synthesis, physical properties in solution, and single-molecule conductance of paddle-wheel diruthenium complexes 1R having diarylformamidinato supporting ligands (DArF: p-R-C6H4-NCHN-C6H4-R-p) and two axial thioanisylethynyl conducting anchor groups, revealing unique substituent effects with respect to the conduction orbitals. The complexes 1R with a few different aryl substituents (R = OMe, H, Cl, and CF3) were fully characterized by spectroscopic and crystallographic analyses. The single-molecule conductance determined by the scanning tunneling microscope break junction (STM-BJ) technique was in the 10-5 to 10-4 G 0 region, and the order of conductance was 1OMe > 1CF3 ≫ 1H ∼ 1Cl, which was not consistent with the Hammett substituent constants σ of R. Cyclic voltammetry revealed the narrow HOMO-LUMO gaps of 1R originating from the diruthenium motif, as further supported by the DFT study. The DFT-NEGF analysis of this unique result revealed that the dominant conductance routes changed from HOMO conductance (for 1OMe) to LUMO conductance (for 1CF3). The drastic change in the conductance properties originates from the intrinsic narrow HOMO-LUMO gaps.

7.
Chem Sci ; 12(12): 4338-4344, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-34163696

RESUMO

Here, we report multinuclear organometallic molecular wires having (2,5-diethynylthiophene)diyl-Ru(dppe)2 repeating units. Despite the molecular dimensions of 2-4 nm the multinuclear wires show high conductance (up to 10-2 to 10-3 G 0) at the single-molecule level with small attenuation factors (ß) as revealed by STM-break junction measurements. The high performance can be attributed to the efficient energy alignment between the Fermi level of the metal electrodes and the HOMO levels of the multinuclear molecular wires as revealed by DFT-NEGF calculations. Electrochemical and DFT studies reveal that the strong Ru-Ru interaction through the bridging ligands raises the HOMO levels to access the Fermi level, leading to high conductance and small ß values.

8.
Chemistry ; 27(37): 9666-9673, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-33856082

RESUMO

In this work, the design, synthesis, and single-molecule conductance of ethynyl- and butadiynyl-ruthenium molecular wires with thioether anchor groups [RS=n-C6 H13 S, p-tert-Bu-C6 H4 S), trans-{RS-(C≡C)n }2 Ru(dppe)2 (n=1 (1R ), 2 (2R ); dppe: 1,2-bis(diphenylphosphino)ethane) and trans-(n-C6 H13 S-C≡C)2 Ru{P(OMe)3 }4 3hex ] are reported. Scanning tunneling microscope break-junction study has revealed conductance of the organometallic molecular wires with the thioacetylene backbones higher than that of the related organometallic wires having arylethynylruthenium linkages with the sulfur anchor groups, trans-{p-MeS-C6 H4 -(C≡C)n }2 Ru(phosphine)4 4n (n=1, 2) and trans-(Th-C≡C)2 Ru(phosphine)4 5 (Th=3-thienyl). It should be noted that the molecular junctions constructed from the butadiynyl wire 2R , trans-{Au-RS-(C≡C)2 }2 Ru(dppe)2 (Au: gold metal electrode), show conductance comparable to that of the covalently linked polyynyl wire with the similar molecular length, trans-{Au-(C≡C)3 }2 Ru(dppe)2 63 . The DFT non-equilibrium Green's function (NEGF) study supports the highly conducting nature of the thioacetylene molecular wires through HOMO orbitals.

9.
Inorg Chem ; 59(18): 13254-13261, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32806015

RESUMO

Single-molecule conductance studies on metal-containing inorganic and organometallic molecular wires are relatively less explored compared to those on organic molecular wires. Furthermore, conductance and transmission profiles of the metal-containing wires insensitive to the metal centers often hinder rational design for high performance wires. Here, synthesis and single-molecule conductance measurements of the bis(butadiynyl)rhodium wires with tetracarbene ligands 1H and 1Au are reported as rare examples for Rh(III) diacetylide molecular wires. The rhodium wires derived from the terminal acetylene and gold-functionalized precursors show comparable, high single-molecule conductance ((6-7) × 10-3 G0) as determined by the STM break-junction measurements, suggesting formation of virtually the same covalently linked metal electrode-molecule-metal electrode junctions. The values for the metallapolyynes are larger than those of the organic polyyne wires having the similar molecular lengths. The hybrid DFT-NEGF calculations of the model systems suggest that profiles of transmission spectra are highly sensitive to the presence and species of the metal fragments doped into the polyyne molecular wire because the conductance orbitals of the metallapolyynes molecular junctions carry significant metal fragment characters. Thus, the metallapolyyne junctions turn out to be suitable platforms for rationally designed molecular wires.

10.
Nature ; 583(7816): 391-395, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32669696

RESUMO

Ammonia (NH3) is pivotal to the fertilizer industry and one of the most commonly produced chemicals1. The direct use of atmospheric nitrogen (N2) had been challenging, owing to its large bond energy (945 kilojoules per mole)2,3, until the development of the Haber-Bosch process. Subsequently, many strategies have been explored to reduce the activation barrier of the N≡N bond and make the process more efficient. These include using alkali and alkaline earth metal oxides as promoters to boost the performance of traditional iron- and ruthenium-based catalysts4-6 via electron transfer from the promoters to the antibonding bonds of N2 through transition metals7,8. An electride support further lowers the activation barrier because its low work function and high electron density enhance electron transfer to transition metals9,10. This strategy has facilitated ammonia synthesis from N2 dissociation11 and enabled catalytic operation under mild conditions; however, it requires the use of ruthenium, which is expensive. Alternatively, it has been shown that nitrides containing surface nitrogen vacancies can activate N2 (refs. 12-15). Here we report that nickel-loaded lanthanum nitride (LaN) enables stable and highly efficient ammonia synthesis, owing to a dual-site mechanism that avoids commonly encountered scaling relations. Kinetic and isotope-labelling experiments, as well as density functional theory calculations, confirm that nitrogen vacancies are generated on LaN with low formation energy, and efficiently bind and activate N2. In addition, the nickel metal loaded onto the nitride dissociates H2. The use of distinct sites for activating the two reactants, and the synergy between them, results in the nickel-loaded LaN catalyst exhibiting an activity that far exceeds that of more conventional cobalt- and nickel-based catalysts, and that is comparable to that of ruthenium-based catalysts. Our results illustrate the potential of using vacancy sites in reaction cycles, and introduce a design concept for catalysts for ammonia synthesis, using naturally abundant elements.

11.
Nat Commun ; 10(1): 5653, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827099

RESUMO

Suzuki cross-coupling reactions catalyzed by palladium are powerful tools for the synthesis of functional organic compounds. Excellent catalytic activity and stability require negatively charged Pd species and the avoidance of metal leaching or clustering in a heterogeneous system. Here we report a Pd-based electride material, Y3Pd2, in which active Pd atoms are incorporated in a lattice together with Y. As evidenced from detailed characterization and density functional theory (DFT) calculations, Y3Pd2 realizes negatively charged Pd species, a low work function and a high carrier density, which are expected to be beneficial for the efficient Suzuki coupling reaction of activated aryl halides with various coupling partners under mild conditions. The catalytic activity of Y3Pd2 is ten times higher than that of pure Pd and the activation energy is lower by nearly 35%. The Y3Pd2 intermetallic electride catalyst also exhibited extremely good catalytic stability during long-term coupling reactions.

12.
J Am Chem Soc ; 141(51): 20344-20353, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31755269

RESUMO

Mixed anionic materials such as oxyhydrides and oxynitrides have recently attracted significant attention due to their unique properties, such as fast hydride ion conduction, enhanced ferroelectrics, and catalytic activity. However, high temperature (≥800 °C) and/or complicated processes are required for the synthesis of these compounds. Here we report that a novel perovskite oxynitride-hydride, BaCeO3-xNyHz, can be directly synthesized by the reaction of CeO2 with Ba(NH2)2 at low temperatures (300-600 °C). BaCeO3-xNyHz, with and without transition metal nanoparticles, functions as an efficient catalyst for ammonia synthesis through the lattice N3- and H- ion-mediated Mars-van Krevelen mechanism, while ammonia synthesis occurs over conventional catalysts through a Langmuir-Hinshelwood mechanism with high energy barriers (85-121 kJ mol-1). As a consequence, the unique reaction mechanism leads to enhancement of the activity of BaCeO3-based catalysts by a factor of 8-218 and lowers the activation energy (46-62 kJ mol-1) for ammonia synthesis. Furthermore, isotopic experiments reveal that this catalyst shifts the rate-determining step for ammonia synthesis from N2 dissociation to N-H bond formation.

13.
Nat Commun ; 10(1): 2578, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189877

RESUMO

Fast ionic conductors have considerable potential to enable technological development for energy storage and conversion. Hydride (H-) ions are a unique species because of their natural abundance, light mass, and large polarizability. Herein, we investigate characteristic H- conduction, i.e., fast ionic conduction controlled by a pre-exponential factor. Oxygen-doped LaH3 (LaH3-2xOx) has an optimum ionic conductivity of 2.6 × 10-2 S cm-1, which to the best of our knowledge is the highest H- conductivity reported to date at intermediate temperatures. With increasing oxygen content, the relatively high activation energy remains unchanged, whereas the pre-exponential factor decreases dramatically. This extraordinarily large pre-exponential factor is explained by introducing temperature-dependent enthalpy, derived from H- trapped by lanthanum ions bonded to oxygen ions. Consequently, light mass and large polarizability of H-, and the framework comprising densely packed H- in LaH3-2xOx are crucial factors that impose significant temperature dependence on the potential energy and implement characteristic fast H- conduction.

14.
Nat Commun ; 10(1): 2284, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123253

RESUMO

Mn+1AXn phases are a large family of compounds that have been limited, so far, to carbides and nitrides. Here we report the prediction of a compound, Ti2InB2, a stable boron-based ternary phase in the Ti-In-B system, using a computational structure search strategy. This predicted Ti2InB2 compound is successfully synthesized using a solid-state reaction route and its space group is confirmed as P[Formula: see text]m2 (No. 187), which is in fact a hexagonal subgroup of P63/mmc (No. 194), the symmetry group of conventional Mn+1AXn phases. Moreover, a strategy for the synthesis of MXenes from Mn+1AXn phases is applied, and a layered boride, TiB, is obtained by the removal of the indium layer through dealloying of the parent Ti2InB2 at high temperature under a high vacuum. We theoretically demonstrate that the TiB single layer exhibits superior potential as an anode material for Li/Na ion batteries than conventional carbide MXenes such as Ti3C2.

15.
J Am Chem Soc ; 141(14): 5995-6005, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30869881

RESUMO

When employing self-assembled monolayers (SAMs) for tuning surface and interface properties, organic molecules that enable strong binding to the substrate, large-area structural uniformity, precise alignment of functional groups, and control of their density are highly desirable. To achieve these goals, tripod systems bearing multiple bonding sites have been developed as an alternative to conventional monodentate systems. Bonding of all three sites has, however, hardly been achieved, with the consequence that structural uniformity and orientational order in tripodal SAMs are usually quite poor. To overcome that problem, we designed 1,8,13-trimercaptomethyltriptycene (T1) and 1,8,13-trimercaptotriptycene (T2) as potential tripodal SAM precursors and investigated their adsorption behavior on Au(111) combining several advanced experimental techniques and state-of-the-art theoretical simulations. Both SAMs adopt dense, nested hexagonal structures but differ in their adsorption configurations and structural uniformity. While the T2-based SAM exhibits a low degree of order and noticeable deviation from the desired tripodal anchoring, all three anchoring groups of T1 are equally bonded to the surface as thiolates, resulting in an almost upright orientation of the benzene rings and large-area structural uniformity. These superior properties are attributed to the effect of conformationally flexible methylene linkers at the anchoring groups, absent in the case of T2. Both SAMs display interesting electronic properties, and, bearing in mind that the triptycene framework can be functionalized by tail groups in various positions and with high degree of alignment, especially T1 appears as an ideal docking platform for complex and highly functional molecular films.

16.
Chem Sci ; 11(6): 1538-1541, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34084384

RESUMO

We studied the relationship between proton conductivity and the terahertz-regime vibrations of two-dimensional MOFs. The results of spectroscopy studies clarified the essential role played by the collective motions in the terahertz region in 2D layers for efficient H+ conduction. Ab initio calculations suggested the collective motion to be predominantly determined by the valence electronic structure, depending on the identity of the metal ion.

17.
Chem Commun (Camb) ; 54(88): 12443-12446, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30280176

RESUMO

Here, we report a facile procedure based on surface self-assembly for controlling the π-π stacking order and relevant rectified charge transport properties in stacks of aromatic molecules on a single-molecule scale. A high rectification ratio of 10 was achieved and the rectification direction was uniquely determined by the controlled stacking order of the aromatic molecules on the graphene layers of HOPG.

18.
J Am Chem Soc ; 140(32): 10080-10084, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29962208

RESUMO

Exploration of highly conductive molecules is essential to achieve single-molecule electronic devices. The present paper describes the results on single-molecule conductance study of polyyne wires doped with the organometallic Ru(dppe)2 fragment, X-(C≡C) n-Ru(dppe)2-(C≡C) n-X. The metallapolyyne wires end-capped with the gold fragments (X = AuL) are subjected to single-molecule conductance measurements with the STM break junction technique, which reveal the high conductance (10-3-10-2 G0; n = 2-4) with the low attenuation factor (0.25 Å-1) and the low contact resistance (33 kΩ). A unique "'doping'" effect of Ru(dppe)2 fragment was found to lead to the high performance as suggested by the hybrid density functional theory-nonequilibrium green function calculation.

19.
Chemistry ; 24(31): 7976-7984, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29603479

RESUMO

Ammonia decomposition is an important technology for extracting hydrogen from ammonia toward the realization of a hydrogen economy. Herein, it is reported that large oblate hemispheroidal Ru particles on Ca(NH2 )2 function as efficient catalysts for ammonia decomposition. The turnover frequency of Ru/Ca(NH2 )2 increased by two orders of magnitude when the Ru particle size was increased from 1.5 to 8.4 nm. More than 90 % ammonia decomposition was achieved over Ru/Ca(NH2 )2 with large oblate hemispheroidal Ru particles at 360 °C, which is comparable to that of alkali-promoted Ru catalysts with small Ru particle sizes. XAFS analyses revealed that Ru particles are immobilized on Ca(NH2 )2 by Ru-N bonds formed at the metal/support interface, which lead to oblate hemispheroidal Ru particles. Such a strong metal-support interaction in Ru/Ca(NH2 )2 is also substantiated by DFT calculations. The high activity of Ru/Ca(NH2 )2 with large Ru particles primarily originates from the shape and appropriate size of the Ru particles with a high density of active sites rather than the electron-donating ability of Ca(NH2 )2 .

20.
Phys Chem Chem Phys ; 20(18): 12574-12588, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29691523

RESUMO

The effects of cation dopants in zirconia on the H2 oxidation mechanism at the pore/nickel/zirconia triple phase boundary (TPB) were theoretically examined. Y, Sc, Al, Ce, and Ca were considered as dopants, and on-boundary, O-migration, and H-migration reaction mechanisms were examined. Based on density functional theory calculations, Y as a dopant favored the on-boundary mechanism with water molecule formation within the immediate proximity of the TPB. The corresponding rate-limiting step is H transfer from the nickel surface to the boundary. In contrast, the on-boundary mechanism is not completed with the Al-, Sc-, and Ca-doped systems, due to the dissociation of water molecules at the boundary. In the Al-doped system, the O-migration mechanism is the major reaction pathway due to a low barrier for the rate-limiting step that corresponds to O transfer from zirconia to the nickel surface. The H-migration mechanism, which implies water molecule formation on the zirconia surface at a position distant from the boundary, should dominate at the Sc-, Ca-, and Ce-doped TPBs, with the lowest activation barrier at the Sc-doped TPB. The reasons for the switching of the reaction mechanisms depending on the dopant species are analyzed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...