Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 14(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38790449

RESUMO

Virtual reality (VR) enables the development of virtual training frameworks suitable for various domains, especially when real-world conditions may be hazardous or impossible to replicate because of unique additional resources (e.g., equipment, infrastructure, people, locations). Although VR technology has significantly advanced in recent years, methods for evaluating immersion (i.e., the extent to which the user is engaged with the sensory information from the virtual environment or is invested in the intended task) continue to rely on self-reported questionnaires, which are often administered after using the virtual scenario. Having an objective method to measure immersion is particularly important when using VR for training, education, and applications that promote the development, fine-tuning, or maintenance of skills. The level of immersion may impact performance and the translation of knowledge and skills to the real-world. This is particularly important in tasks where motor skills are combined with complex decision making, such as surgical procedures. Efforts to better measure immersion have included the use of physiological measurements including heart rate and skin response, but so far they do not offer robust metrics that provide the sensitivity to discriminate different states (idle, easy, and hard), which is critical when using VR for training to determine how successful the training is in engaging the user's senses and challenging their cognitive capabilities. In this study, electroencephalography (EEG) data were collected from 14 participants who completed VR jigsaw puzzles with two different levels of task difficulty. Machine learning was able to accurately classify the EEG data collected during three different states, obtaining accuracy rates of 86% and 97% for differentiating easy versus hard difficulty states and baseline vs. VR states. Building on these results may enable the identification of robust biomarkers of immersion in VR, enabling real-time recognition of the level of immersion that can be used to design more effective and translative VR-based training. This method has the potential to adjust aspects of VR related to task difficulty to ensure that participants are immersed in VR.

2.
Basic Clin Neurosci ; 14(2): 297-309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107533

RESUMO

Introduction: Video games affect the stress system and cognitive abilities in different ways. Here, we evaluated electrophysiological and biochemical indicators of stress and assessed their effects on cognition and behavioral indexes after playing a scary video game. Methods: Thirty volunteers were recruited into two groups as control and experimental. The saliva and blood samples were collected before and after intervention (watching/playing the scary game for control and experimental groups respectively). To measure cortisol and salivary alpha-amylase (sAA) levels, oxytocin (OT), and brain-derived neurotrophic factor (BDNF) plasma levels, dedicated ELISA kits were used. Electroencephalography recording was done before and after interventions for electroencephalogram (EEG)-based emotion and stress recognition. Then, the feature extraction (for mental stress, arousal, and valence) was done. Matrix laboratory (MATLAB) software, version 7.0.1 was used for processing EEG-acquired data. The repeated measures were applied to determine the intragroup significance level of difference. Results: Scary gameplay increases mental stress (P<0.001) and arousal (P<0.001) features and decreases the valence (P<0.001) one. The salivary cortisol and alpha-amylase levels were significantly higher after the gameplay (P<0.001 for both). OT and BDNF plasma levels decreased after playing the scary game (P<0.05 for both). Conclusion: We conclude that perceived stress considerably elevates among players of scary video games, which adversely affects the emotional and cognitive capabilities, possibly via the strength of synaptic connections, and dendritic thorn construction of the brain neurons among players. Highlights: The mental stress level increases in players of scary video games.The salivary cortisol and alpha-amylase levels are significantly higher after the scary gameplay.Plasma levels of oxytocin and brain-derived neurotrophic factor decrease after the scary gameplay.The arousal and valence features increase in players of scary video game.Cognitive capabilities are adversely affected by the scary gameplay. Plain Language Summary: Nowadays, video games have become an important part of human life at different ages. Therefore, assessing their effects (improving and/or damaging) on cognition and behavior is important for understanding how they affect the nervous system. The results of such studies can be used to design a variety of games in the future in a way that minimizes the harmful side effects of video games on human cognitive functions and maximizes their beneficial effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...