Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Optom ; : 1-3, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190493

RESUMO

Kyrieleis plaques are described in literature as calcific-appearing segmented inflammatory deposits along retinal arterial branches. (1) This clinical finding is most commonly unilateral and typically adjacent to an area of active retinal infection or inflammation. (2) The plaques do not appear to be intraluminal or extravasal, but rather within the vessel walls. (3) Considered to be a dishonourable eponym, this rare clinical entity is often also documented as segmental retinal periarteritis. Kyrieleis plaques are a diagnosis of exclusion and should be differentiated from other presentations of retinal vessel damage including emboli, artery sheathing, sclerosis, and periphlebitis all of which may warrant prompt referral or comanagement.

2.
Stem Cells ; 36(5): 775-784, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29341332

RESUMO

Macrophages are crucial drivers of inflammatory corneal neovascularization and thus are potential targets for immunomodulatory therapies. We hypothesized that therapeutic use of cornea-derived mesenchymal stromal cells (cMSCs) may alter the function of macrophages. We found that cMSCs can modulate the phenotype and angiogenic function of macrophages. In vitro, cMSCs induce apoptosis of macrophages while preferentially promoting a distinct CD14hi CD16hi CD163hi CD206hi immunophenotype that has significantly reduced angiogenic effects based on in vitro angiogenesis assays. In vivo, application of cMSCs to murine corneas after injury leads to reduced macrophage infiltration and higher expression of CD206 in macrophages. Macrophages cocultured ("educated") by cMSCs express significantly higher levels of anti-angiogenic and anti-inflammatory factors compared with control macrophages. In vivo, injured corneas treated with cMSC-educated macrophages demonstrate significantly less neovascularization compared with corneas treated with control macrophages. Knocking down the expression of pigment epithelial derived factor (PEDF) in cMSCs significantly abrogates its modulating effects on macrophages, as shown by the reduced rate of apoptosis, decreased expression of sFLT-1/PEDF, and increased expression of vascular endothelial growth factor-A in the cocultured macrophages. Similarly, cMSCs isolated from PEDF knockout mice are less effective compared with wild-type cMSCs at inhibiting macrophage infiltration when applied to wild-type corneas after injury. Overall, these results demonstrate that cMSCs therapeutically suppress the angiogenic capacity of macrophages and highlight the role of cMSC secreted PEDF in the modulation of macrophage phenotype and function. Stem Cells 2018;36:775-784.


Assuntos
Córnea/citologia , Imunomodulação/fisiologia , Macrófagos/citologia , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Animais , Apoptose/fisiologia , Córnea/irrigação sanguínea , Imunofenotipagem/métodos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...