Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20148353

RESUMO

SARS-CoV-2 infection is typically very mild and often asymptomatic in children. A complication is the rare Multisystem Inflammatory Syndrome in Children (MIS-C) associated with COVID-19, presenting 4-6 weeks after infection as high fever, organ dysfunction and strongly elevated markers of inflammation. The pathogenesis is unclear but has overlapping features with Kawasaki disease suggestive of vasculitis and a likely autoimmune etiology. We apply systems-level analyses of blood immune cells, cytokines and autoantibodies in healthy children, children with Kawasaki disease enrolled prior to COVID-19, children infected with SARS-CoV-2 and children presenting with MIS-C. We find that the inflammatory response in MIS-C differs from the cytokine storm of severe acute COVID-19, shares several features with Kawasaki disease, but also differs from this condition with respect to T-cell subsets, IL-17A and biomarkers associated with arterial damage. Finally, autoantibody profiling suggests multiple autoantibodies that could be involved in the pathogenesis of MIS-C. HIGHLIGHTSHyperinflammation in MIS-C differs from that of acute COVID-19 T-cell subsets discriminate Kawasaki disease patients from MIS-C IL-17A drives Kawasaki, but not MIS-C hyperinflammation. Global autoantibodies profiling indicate possibly pathogenic autoantibodies

2.
PLoS One ; 9(12): e111758, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25541692

RESUMO

In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700-1800 cm(-1), indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Membrana Celular/genética , Membrana Celular/imunologia , Membrana Celular/metabolismo , Células Cultivadas , Regulação para Baixo , Células HEK293 , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Fenótipo , Análise Espectral Raman , Estresse Mecânico , Evasão Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...