Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Imaging Radionucl Ther ; 32(1): 42-53, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36818953

RESUMO

Objectives: Attenuation correction (AC) using transmission scanning-like computed tomography (CT) is the standard method to increase the accuracy of cardiac single-photon emission computed tomography (SPECT) images. Recently developed dedicated cardiac SPECT do not support CT, and thus, scans on these systems are vulnerable to attenuation artifacts. This study presented a new method for generating an attenuation map directly from emission data by segmentation of precisely non-rigid registration extended cardiac-torso (XCAT)-digital phantom with cardiac SPECT images. Methods: In-house developed non-rigid registration algorithm automatically aligns the XCAT- phantom with cardiac SPECT image to precisely segment the contour of organs. Pre-defined attenuation coefficients for given photon energies were assigned to generate attenuation maps. The CT-based attenuation maps were used for validation with which cardiac SPECT/CT data of 38 patients were included. Segmental myocardial counts of a 17-segment model from these databases were compared based on the basis of the paired t-test. Results: The mean, and standard deviation of the mean square error and structural similarity index measure of the female stress phase between the proposed attenuation maps and the CT attenuation maps were 6.99±1.23% and 92±2.0%, of the male stress were 6.87±3.8% and 96±1.0%. Proposed attenuation correction and computed tomography based attenuation correction average myocardial perfusion count was significantly higher than that in non-AC in the mid-inferior, mid-lateral, basal-inferior, and lateral regions (p<0.001). Conclusion: The proposed attenuation maps showed good agreement with the CT-based attenuation map. Therefore, it is feasible to enable AC for a dedicated cardiac SPECT or SPECT standalone scanners.

2.
J Ultrasound ; 26(2): 355-367, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36696046

RESUMO

PURPOSE: The purpose of this study was to assess the diagnostic performance of mammography (MMG) and ultrasound (US) imaging for detecting breast cancer. METHODS: Comprehensive searches of PubMed, Scopus and EMBASE from 2008 to 2021 were performed. A summary receiver operating characteristic curve (SROC) was constructed to summarize the overall test performance of MMG and US. Histopathologic analysis and/or close clinical and imaging follow-up for at least 6 months were used as golden reference. RESULTS: Analysis of the studies revealed that the overall validity estimates of MMG and US in detecting breast cancer were as follows: pooled sensitivity per-patient were 0.82 (95% CI 0.76-0.87) and 0.83 (95% CI 0.71-0.91) respectively, The pooled specificities for detection of breast cancer using MMG, and US were 0.84 (95% CI 0.73-0.92) and 0.84 (95% CI 0.74-0.91) respectively. AUC of MMG, and US were 0.8933 and 0.8310 respectively. Pooled sensitivity and specificity per-lesion was 76% (95% CI 0.62-0.86) and 82% (95% CI 0.66-0.91) for MMG and 94% (95% CI 0.87-0.97) and 84% (95% CI 0.74-0.91) for US. CONCLUSIONS: The meta-analysis found that, US and MMG has similar diagnostic performance in detecting breast cancer on per-patient basis after corrected threshold effect. However, on a per-lesion basis US was found to have a better diagnostic accuracy than MMG.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Ultrassonografia Mamária/métodos , Ultrassonografia , Sensibilidade e Especificidade
3.
Radiat Environ Biophys ; 61(1): 119-131, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860272

RESUMO

Using a 50-kV INTRABEAM® system after breast-conserving surgery, breast skin injury and long treatment time remain the challenging problems when large-size spherical applicators are used. This study has aimed to address these problems using gold (Au) nanoparticles (NPs). For this, surface and isotropic doses were measured using a Gafchromic EBT3 film and a water phantom. The particle propagation code EGSnrc/Epp was used to score the corresponding doses using a geometry similar to that used in the measurements. The simulation was validated using a gamma index of 2%/2 mm acceptance criterion in the gamma analysis. After validation Au-NP-enriched breast tissue was simulated to quantify any breast skin dose reduction and shortening of treatment time. It turned out that the gamma value deduced for validation of the simulation was in an acceptable range (i.e., less than one). For 20 mg-Au/g-breast tissue, the calculated Dose Enhancement Ratio (DER) of the breast skin was 0.412 and 0.414 using applicators with diameters of 1.5 cm and 5 cm, respectively. The corresponding treatment times were shortened by 72.22% and 72.30% at 20 mg-Au/g-breast tissue concentration, respectively. It is concluded that Au-NP-enriched breast tissue shows significant advantages, such as reducing the radiation dose received by the breast skin as well as shortening the treatment time. Additionally, the DERs were not significantly dependent on the size of the applicators.


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Feminino , Ouro , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica
4.
Biomed Phys Eng Express ; 7(3)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33836513

RESUMO

Using the 50 kV INTRABEAM®IORT system after breast-conserving surgery: tumor recurrence and organs at risk (OARs), such as the lung and heart, long-term complications remain the challenging problems for breast cancer patients. So, the objective of this study was to address these two problems with the help of high atomic number nanoparticles (NPs). A Monte Carlo (MC) Simulation type EGSnrc C++ class library (egspp) with its Easy particle propagation (Epp) user code was used. The simulation was validated against the measured depth dose data found in our previous study (Tegaw,et al2020 Dosimetric characteristics of the INTRABEAM®system with spherical applicators in the presence of air gaps and tissue heterogeneities,Radiat. Environ. Biophys. (10.1007/s00411-020-00835-0)) using the gamma index and passed 2%/2 mm acceptance criteria in the gamma analysis. Gold (Au) NPs were selected after comparing Dose Enhancement Ratios (DERs) of bismuth (Bi), Au, and platinum (Pt) NPs which were calculated from the simulated results. As a result, 0.02, 0.2, 2, 10, and 20 mg-Au/g-breast tissue were used throughout this study. These particles were not distributed in discrete but in a uniform concentration. For 20 mg-Au/g-breast tissue, the DERs were 3.6, 0.420, and 0.323 for breast tissue, lung, heart, respectively, using the 1.5 cm-diameter applicator (AP) and 3.61, 0.428, and 0.335 forbreast tissue, lung, and heart using the 5 cm-diameter applicator, respectively. DER increased with the decrease in the depth of tissues and increase in the effective atomic number (Zeff) and concentration of Au NPs, however, there was no significant change as AP sizes increased. Therefore, Au NPs showed dual advantages such as dose enhancement within the tumor bed and reduction in the OARs (heart and lung).


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias da Mama/cirurgia , Feminino , Humanos , Método de Monte Carlo , Recidiva Local de Neoplasia , Dosagem Radioterapêutica
5.
Ann Nucl Med ; 33(1): 1-13, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30350181

RESUMO

To reliably interpret and perform quantitative analysis, attenuation correction for cardiac single-photon emission computed tomography (SPECT) is fundamental. Thus, knowledge of the patient-specific attenuation map for accurate correction is required in SPECT quantitative imaging. The aim of this systematic review is to present general principles of attenuation correction and provide a structured summary of the approaches that have been proposed for generating the attenuation map for cardiac SPECT. We identified relevant articles published in English pertaining to the attenuation map (AM) determination using SPECT emission data only by searching PubMed, EMBASE, Scopus, and Web of Science databases. Moreover, other articles were hand searched. The protocol of this systematic review was registered in PROSPERO and the code given is CRD42017060512. Transmissionless techniques of determining attenuation map including calculated methods, statistical modeling for simultaneous estimation of attenuation and emission, consistency conditions criteria, using scattered data and other methods were reviewed. Methods for performing attenuation map for cardiac SPECT are developing and the progresses made are promising. However, much work is needed to assess the efficacy of the correction schemes in the clinical routine.


Assuntos
Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Emissão de Fóton Único , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...