Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Urogynecol J ; 26(5): 749-55, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25477141

RESUMO

INTRODUCTION AND HYPOTHESIS: Most patients in regions where obstetric vesicovaginal fistulas (VVF) are endemic void using a squatting posture. Additionally, many patients continue to have lower urinary tract symptoms (LUTS) following fistula closure. We designed and validated a prototype platform that allows urodynamic studies to be performed in a squatting position and conducted a pilot study to assess uroflowmetry in this patient population. METHODS: Sixteen patients with persistent LUTS following fistula surgery were recruited. Posture measurements were taken in each patient's natural voiding posture on the ground and were then repeated using the platform. Nine patients with persistent urinary incontinence also underwent uroflowmetry. The data were compared with normal values in different nomograms. Paired t tests were used to determine significant differences in posture. One-way ANOVA was used to determine statistical significance between flow rate values. RESULTS: Only the heel-to-heel distance (H-H) measure of posture was significantly increased on the platform compared with on the ground. The mean corrected Qmax was 0.89 ± 0.46. Flow rate values were significantly lower than mean normal flow rates obtained from the nomograms. In general, the patients' uroflowmetry patterns were similar to those indicative of impaired detrusor function. CONCLUSION: A platform for conducting urodynamic studies in a squatting posture was successfully validated in the VVF patient population. The finding of increased H-H on the platform is expected, since the patient must accommodate a large funnel for urine collection. The pilot data suggest that patients with persistent urinary incontinence following VVF closure may also have significant voiding dysfunction.


Assuntos
Técnicas de Diagnóstico Urológico/instrumentação , Sintomas do Trato Urinário Inferior/fisiopatologia , Postura , Micção , Urodinâmica , Fístula Vesicovaginal/complicações , Adulto , África , Assistência à Saúde Culturalmente Competente , Feminino , Humanos , Sintomas do Trato Urinário Inferior/etiologia , Pessoa de Meia-Idade , Projetos Piloto , Fístula Vesicovaginal/cirurgia , Adulto Jovem
2.
Nucleic Acids Res ; 42(6): 3982-97, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24371285

RESUMO

Several reports have previously highlighted the potential role of miR-206 in the post-transcriptional downregulation of utrophin A in cultured cells. Along those lines, we recently identified K-homology splicing regulator protein (KSRP) as an important negative regulator in the post-transcriptional control of utrophin A in skeletal muscle. We sought to determine whether these two pathways act together to downregulate utrophin A expression in skeletal muscle. Surprisingly, we discovered that miR-206 overexpression in cultured cells and dystrophic muscle fibers causes upregulation of endogenous utrophin A levels. We further show that this upregulation of utrophin A results from the binding of miR-206 to conserved sites located in the 3'-UTR (untranslated region) of KSRP, thus causing the subsequent inhibition of KSRP expression. This miR-206-mediated decrease in KSRP levels leads, in turn, to an increase in the expression of utrophin A due to a reduction in the activity of this destabilizing RNA-binding protein. Our work shows that miR-206 can oscillate between direct repression of utrophin A expression via its 3'-UTR and activation of its expression through decreased availability of KSRP and interactions with AU-rich elements located within the 3'-UTR of utrophin A. Our study thus reveals that two apparent negative post-transcriptional pathways can act distinctively as molecular switches causing repression or activation of utrophin A expression.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Utrofina/metabolismo , Regiões 3' não Traduzidas , Animais , Diferenciação Celular , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/citologia , Proteínas de Ligação a RNA/genética , Transativadores/genética , Regulação para Cima , Utrofina/genética
3.
Hum Mol Genet ; 22(15): 3093-111, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23575223

RESUMO

Several therapeutic approaches are currently being developed for Duchenne muscular dystrophy (DMD) including upregulating the levels of endogenous utrophin A in dystrophic fibers. Here, we examined the role of post-transcriptional mechanisms in controlling utrophin A expression in skeletal muscle. We show that activation of p38 leads to an increase in utrophin A independently of a transcriptional induction. Rather, p38 controls the levels of utrophin A mRNA by extending the half-life of transcripts via AU-rich elements (AREs). This mechanism critically depends on a decrease in the functional availability of KSRP, an RNA-binding protein known to promote decay of ARE-containing transcripts. In vitro and in vivo binding studies revealed that KSRP interacts with specific AREs located within the utrophin A 3' UTR. Electroporation experiments to knockdown KSRP led to an increase in utrophin A in wild-type and mdx mouse muscles. In pre-clinical studies, treatment of mdx mice with heparin, an activator of p38, causes a pronounced increase in utrophin A in diaphragm muscle fibers. Together, these studies identify a pathway that culminates in the post-transcriptional regulation of utrophin A through increases in mRNA stability. Furthermore, our results constitute proof-of-principle showing that pharmacological activation of p38 may prove beneficial as a novel therapeutic approach for DMD.


Assuntos
Elementos Ricos em Adenilato e Uridilato , Músculo Esquelético/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Utrofina/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Regiões 3' não Traduzidas , Animais , Ativação Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Heparina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular Animal , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Ligação Proteica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Utrofina/metabolismo
4.
Am J Mens Health ; 7(2): 102-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22948300

RESUMO

Prostate cancer is the leading cancer type diagnosed in American men and is the second leading cancer diagnosed in men worldwide. Although studies have been conducted to investigate the association between prostate cancer and exposure to pesticides and/or farming, the results have been inconsistent. We performed a meta-analysis to summarize the association of farming and prostate cancer. The PubMed database was searched to identify all published case-control studies that evaluated farming as an occupational exposure by questionnaire or interview and prostate cancer. Ten published and two unpublished studies were included in this analysis, yielding 3,978 cases and 7,393 controls. Prostate cancer cases were almost four times more likely to be farmers compared with controls with benign prostate hyperplasia (BPH; meta odds ratio [OR], crude = 3.83, 95% confidence interval [CI] = 1.96-7.48, Q-test p value = .352; two studies); similar results were obtained when non-BPH controls were considered, but with moderate heterogeneity between studies (meta OR crude = 1.38, 95% CI = 1.16-1.64, Q-test p value = .216, I (2) = 31% [95% CI = 0-73]; five studies). Reported pesticide exposure was inversely associated with prostate cancer (meta OR crude = 0.68, 95% CI = 0.49-0.96, Q-test p value = .331; four studies), whereas no association with exposure to fertilizers was observed. Our findings confirm that farming is a risk factor for prostate cancer, but this increased risk may not be due to exposure to pesticides.


Assuntos
Doenças dos Trabalhadores Agrícolas/induzido quimicamente , Agricultura , Praguicidas/intoxicação , Neoplasias da Próstata/induzido quimicamente , Doenças dos Trabalhadores Agrícolas/epidemiologia , Estudos de Casos e Controles , Intervalos de Confiança , Humanos , Masculino , Exposição Ocupacional/efeitos adversos , Razão de Chances , Neoplasias da Próstata/epidemiologia
5.
Hum Mol Genet ; 22(4): 668-84, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23136128

RESUMO

SMN1, the causative gene for spinal muscular atrophy (SMA), plays a housekeeping role in the biogenesis of small nuclear RNA ribonucleoproteins. SMN is also present in granular foci along axonal projections of motoneurons, which are the predominant cell type affected in the pathology. These so-called RNA granules mediate the transport of specific mRNAs along neurites and regulate mRNA localization, stability, as well as local translation. Recent work has provided evidence suggesting that SMN may participate in the assembly of RNA granules, but beyond that, the precise nature of its role within these structures remains unclear. Here, we demonstrate that SMN associates with polyribosomes and can repress translation in an in vitro translation system. We further identify the arginine methyltransferase CARM1 as an mRNA that is regulated at the translational level by SMN and find that CARM1 is abnormally up-regulated in spinal cord tissue from SMA mice and in severe type I SMA patient cells. We have previously characterized a novel regulatory pathway in motoneurons involving the SMN-interacting RNA-binding protein HuD and CARM1. Thus, our results suggest the existence of a potential negative feedback loop in this pathway. Importantly, an SMA-causing mutation in the Tudor domain of SMN completely abolished translational repression, a strong indication for the functional significance of this novel SMN activity in the pathology.


Assuntos
Regulação Enzimológica da Expressão Gênica , Biossíntese de Proteínas , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Animais , Células Cultivadas , Genes Reporter , Humanos , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Polirribossomos/metabolismo , Estrutura Terciária de Proteína , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Medula Espinal/enzimologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/fisiologia , Regiões não Traduzidas , Regulação para Cima
6.
Hum Mol Genet ; 17(4): 506-24, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17998247

RESUMO

KH-type splicing regulatory protein (KSRP) is closely related to chick zipcode-binding protein 2 and rat MARTA1, which are involved in neuronal transport and localization of beta-actin and microtubule-associated protein 2 mRNAs, respectively. KSRP is a multifunctional RNA-binding protein that has been implicated in transcriptional regulation, neuro-specific alternative splicing and mRNA decay. More specifically, KSRP is an essential factor for targeting AU-rich element-containing mRNAs to the exosome. We report here that KSRP is arginine methylated and interacts with the Tudor domain of SMN, the causative gene for spinal muscular atrophy (SMA), in a CARM1 methylation-dependent fashion. These two proteins colocalize in granule-like foci in the neurites of differentiating neuronal cells and the CARM1 methyltransferase is required for normal localization of KSRP in neuronal cells. Strikingly, this interaction is abrogated by naturally-occurring Tudor domain mutations found in human patients affected with severe Type I SMA, a strong indication of its functional significance to the etiology of the disease. We also report for the first time that Q136E and I116F Tudor mutations behave similarly to the previously characterized E134K mutation, and cause loss of Tudor interactions with several cellular methylated proteins. Finally, we show that KSRP is misregulated in the absence of SMN, and this correlated with increased mRNA stability of its mRNA target, p21(cip1/waf1), in spinal cord of mild SMA model mice. Our results suggest SMN can act as a molecular chaperone for methylated proteins involved in RNA metabolism and provide new insights into the pathophysiology of SMA.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transativadores/genética , Transativadores/metabolismo , Sequência de Aminoácidos , Animais , Arginina/química , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Primers do DNA/genética , Regulação da Expressão Gênica , Humanos , Metilação , Camundongos , Camundongos Knockout , Camundongos Mutantes , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/etiologia , Mutação , Proteínas do Tecido Nervoso/química , Estrutura Terciária de Proteína , Proteína-Arginina N-Metiltransferases/deficiência , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas do Complexo SMN , Homologia de Sequência de Aminoácidos , Proteína 1 de Sobrevivência do Neurônio Motor , Transativadores/química
7.
Genet Vaccines Ther ; 3: 7, 2005 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-16115319

RESUMO

Several studies have shown that cell-mediated immune responses play a crucial role in controlling viral replication. As such, a candidate SARS vaccine should elicit broad CD8+ T-cell immune responses. Several groups of mice were immunized alone or in combination with SARS-nucleocapsid immunogen. A high level of specific SARS-CD8+ T-cell response was demonstrated in mice that received DNA encoding the SARS-nucleocapsid, protein and XIAP as an adjuvant. We also observed that co-administration of a plasmid expressing nucleocapsid, recombinant protein and montanide/CpG induces high antibody titers in immunized mice. Moreover, this vaccine approach merits further investigation as a potential candidate vaccine against SARS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...