Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Eng Phys ; 120: 104049, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37838402

RESUMO

The evolution of polymethyl methacrylate (PMMA) based bone cement (BC) from plexiglass to a biomaterial has revolutionized the joint and vertebral arthroplasties field. This widely used grouting material possesses exceptional properties for medical applications, including excellent biocompatibility, impressive mechanical strength, and favorable handling characteristics. PMMA-based BC is preferred in challenging conditions such as osteoporotic vertebral compression fractures, scoliosis, vertebral hemangiomas, spinal metastases, and myelomas, where it is crucial in withstanding stress. This review aims to comprehensively analyze the available reports and guide further research toward enhanced formulations of vertebral BC, focusing on its osteoconductive and mechanical properties. Furthermore, the review emphasizes the significant impact of BC's mechanical properties and osteoconductivity on the success and longevity of vertebroplasty procedures.


Assuntos
Fraturas por Compressão , Fraturas da Coluna Vertebral , Vertebroplastia , Humanos , Polimetil Metacrilato , Cimentos Ósseos , Fraturas por Compressão/cirurgia , Fraturas da Coluna Vertebral/cirurgia , Vertebroplastia/métodos
2.
ACS Omega ; 8(36): 32294-32310, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720748

RESUMO

Shape memory-assisted self-healing polymers have drawn attention over the past few years owing to their interdisciplinary and wide range of applications. Self-healing and shape memory are two approaches used to improve the applicability of polymers in the biomedical field. Combining both these approaches in a polymer composite opens new possibilities for its use in biomedical applications, such as the "close then heal" concept, which uses the shape memory capabilities of polymers to bring injured sections together to promote autonomous healing. This review focuses on using shape memory-assisted self-healing approaches along with their respective affecting factors for biomedical applications such as tissue engineering, drug delivery, biomaterial-inks, and 4D printed scaffolds, soft actuators, wearable electronics, etc. In addition, quantification of self-healing and shape memory efficiency is also discussed. The challenges and prospects of these polymers for biomedical applications have been summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...