Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 93(7): 3510-3516, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33560821

RESUMO

Structural analysis of proteins in a conformationally heterogeneous mixture has long been a difficult problem in structural biology. In structural analysis by covalent labeling mass spectrometry, conformational heterogeneity results in data reflecting a weighted average of all conformers, complicating data analysis and potentially causing misinterpretation of results. Here, we describe a method coupling size-exclusion chromatography (SEC) with hydroxyl radical protein footprinting using inline fast photochemical oxidation of proteins (FPOP). Using a controlled synthetic mixture of holomyoglobin and apomyoglobin, we validate that we can achieve accurate footprints of each conformer using LC-FPOP when compared to offline FPOP of each pure conformer. We then applied LC-FPOP to analyze the adalimumab heat-shock aggregation process. We found that the LC-FPOP footprint of unaggregated adalimumab was consistent with a previously published footprint of the native IgG. The LC-FPOP footprint of the aggregation product indicated that heat-shock aggregation primarily protected the hinge region, suggesting that this region is involved with the heat-shock aggregation process of this molecule. LC-FPOP offers a new method to probe dynamic conformationally heterogeneous mixtures that can be separated by SEC such as biopharmaceutical aggregates and to obtain accurate information on the topography of each conformer.


Assuntos
Radical Hidroxila , Pegadas de Proteínas , Cromatografia Líquida , Espectrometria de Massas , Oxirredução
2.
J Biomol Tech ; 30(4): 50-57, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31662705

RESUMO

Methionine oxidation plays a critical role in many processes of biologic and biomedical importance, including cellular redox responses and stability of protein pharmaceuticals. Bottom-up methods for analysis of methionine oxidation can suffer from incomplete sequence coverage, as well as an inability to readily detect correlated oxidation between 2 or more methionines. However, the methodology for quantifying protein oxidation in top-down analyses is lacking. Previous work has shown that electron transfer dissociation (ETD)-based tandem mass spectrometry (MS/MS) fragmentation offers accurate and precise quantification of amino acid oxidation in peptides, even in complex samples. However, the ability of ETD-based MS/MS fragmentation to accurately quantify amino acid oxidation of proteins in a top-down manner has not been reported. Using apomyoglobin and calmodulin as model proteins, we partially converted methionines into methionine sulfoxide by incubation in H2O2. Using top-down ETD-based fragmentation, we quantified the amount of oxidation of various ETD product ions and compared the quantified values with those from traditional bottom-up analysis. We find that overall quantification of methionine oxidation by top-down MS/MS ranges from good agreement with traditional bottom-up methods to vast differences between the 2 techniques, including missing oxidized product ions and large differences in measured oxidation quantities. Care must be taken in transitioning ETD-based quantitation of oxidation from the peptide level to the intact protein level.


Assuntos
Metionina/metabolismo , Peptídeos/química , Proteínas/química , Espectrometria de Massas em Tandem/métodos , Apoproteínas/análise , Apoproteínas/química , Calmodulina/análise , Calmodulina/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Metionina/análise , Metionina/química , Mioglobina/análise , Mioglobina/química , Oxirredução , Peptídeos/análise , Pegadas de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas/análise , Reprodutibilidade dos Testes
3.
Nat Med ; 23(1): 120-127, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27869804

RESUMO

Cancer cells experience higher oxidative stress from reactive oxygen species (ROS) than do non-malignant cells because of genetic alterations and abnormal growth; as a result, maintenance of the antioxidant glutathione (GSH) is essential for their survival and proliferation. Under conditions of elevated ROS, endogenous L-cysteine (L-Cys) production is insufficient for GSH synthesis. This necessitates uptake of L-Cys that is predominantly in its disulfide form, L-cystine (CSSC), via the xCT(-) transporter. We show that administration of an engineered and pharmacologically optimized human cyst(e)inase enzyme mediates sustained depletion of the extracellular L-Cys and CSSC pool in mice and non-human primates. Treatment with this enzyme selectively causes cell cycle arrest and death in cancer cells due to depletion of intracellular GSH and ensuing elevated ROS; yet this treatment results in no apparent toxicities in mice even after months of continuous treatment. Cyst(e)inase suppressed the growth of prostate carcinoma allografts, reduced tumor growth in both prostate and breast cancer xenografts and doubled the median survival time of TCL1-Tg:p53-/- mice, which develop disease resembling human chronic lymphocytic leukemia. It was observed that enzyme-mediated depletion of the serum L-Cys and CSSC pool suppresses the growth of multiple tumors, yet is very well tolerated for prolonged periods, suggesting that cyst(e)inase represents a safe and effective therapeutic modality for inactivating antioxidant cellular responses in a wide range of malignancies.


Assuntos
Neoplasias da Mama/metabolismo , Cistationina gama-Liase/farmacologia , Cisteína/efeitos dos fármacos , Cistina/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B/metabolismo , Polietilenoglicóis/farmacologia , Neoplasias da Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Cisteína/metabolismo , Cistina/metabolismo , Feminino , Glutationa/metabolismo , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Macaca fascicularis , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transplante de Neoplasias , Estresse Oxidativo , Proteína Supressora de Tumor p53/genética
4.
J Hepatol ; 63(1): 75-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25681557

RESUMO

BACKGROUND & AIMS: Acetaminophen (APAP) overdose is a leading cause of drug-induced acute liver failure. Prolonged c-Jun N-terminal kinase (JNK) activation plays a central role in APAP-induced liver injury and growth arrest, and DNA damage-inducible 45 beta (Gadd45ß) is known to inhibit JNK phosphorylation. Metformin has recently been shown to have hepatoprotective effects. The aim of the present study is to investigate whether metformin mitigates APAP-induced hepatotoxicity and to ascertain the molecular basis of this effect. METHODS: We used APAP- and/or metformin-treated Gadd45ß knockout (KO) mice and wild type (WT) C57BL/6J control mice. Primary mouse hepatocytes were isolated from WT and Gadd45ß KO mice were used for in vitro study. RESULTS: Metformin pretreatment protected against APAP toxicity with decreased liver damage, and inhibited APAP-induced prolonged hepatic JNK phosphorylation in WT mice. Gadd45ß expression was increased after APAP treatment, and the expression of Gadd45ß was further enhanced by metformin. The effects of metformin on APAP-induced liver injury and JNK phosphorylation were abolished in Gadd45ß KO mice. Notably, subtoxic doses of APAP caused cell death and sustained JNK phosphorylation in Gadd45ß-deficient primary hepatocytes. In parallel, APAP increased mortality, severe liver injury, and JNK activation in Gadd45ß KO mice. Interestingly, metformin administered after APAP treatment protected against APAP-evoked hepatotoxicity in WT mice, but not in Gadd45ß KO mice. CONCLUSIONS: This study is the first to demonstrate that metformin shows protective and therapeutic effects against APAP overdose-evoked hepatotoxicity via Gadd45ß-dependent JNK regulation. Metformin would be a promising therapeutic strategy for treatment of APAP overdose.


Assuntos
Antígenos de Diferenciação/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metformina/farmacologia , Acetaminofen/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Hepatócitos/metabolismo , Hepatócitos/patologia , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos
5.
Arch Toxicol ; 89(11): 2159-66, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25224400

RESUMO

An overdose of acetaminophen (APAP) causes hepatotoxicity due to its metabolite, N-acetyl-p-benzoquinone imine. NAD(P)H: quinone oxidoreductase 1 (NQO1) is an important enzyme for detoxification, because it catabolizes endogenous/exogenous quinone to hydroquinone. Although various studies have suggested the possible involvement of NQO1 in APAP-induced hepatotoxicity, its precise role in this remains unclear. We investigated the role of NQO1 against APAP-induced hepatotoxicity using a genetically modified rodent model. NQO1 wild-type (WT) and knockout (KO) mice were treated with different doses of APAP, and we evaluated the mortality and toxicity markers for cell death caused by APAP. NQO1 KO mice showed high sensitivity to APAP-mediated hepatotoxicity (as indicated by a large necrotic region) as well as increased levels of nitrotyrosine adducts and reactive oxygen species. APAP-induced cell death in the livers and primary hepatocytes of NQO1 KO mice, which was accompanied by an extensive reduction in adenosine triphosphate (ATP) levels. In accordance with this ATP depletion, cytosolic increases in mitochondrial proteins such as apoptosis-inducing factor, second mitochondria-derived activator of caspases/DIABLO, endonuclease G, and cytochrome c, which indicate severe mitochondrial dysfunction, were observed in NQO1 KO mice but not in WT mice after APAP exposure. Severe mitochondrial depolarization was also greater in hepatocytes isolated from NQO1 KO mice. Collectively, our data suggest that NQO1 plays a critical role in protection against energy depletion caused by APAP, and NQO1 may be useful in the development of therapeutic approaches to effectively diminish the hepatotoxicity caused by an APAP overdose.


Assuntos
Acetaminofen/toxicidade , Trifosfato de Adenosina/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , NAD(P)H Desidrogenase (Quinona)/genética , Acetaminofen/administração & dosagem , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia , Espécies Reativas de Oxigênio/metabolismo
6.
PLoS Genet ; 9(3): e1003356, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516375

RESUMO

Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS-deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA-encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance.


Assuntos
Tecido Adiposo , Proteínas de Ciclo Celular , Inflamação , Resistência à Insulina/genética , Obesidade , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Haploinsuficiência , Inflamação/metabolismo , Inflamação/patologia , Insulina/genética , Insulina/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Fosforilação Oxidativa
7.
Antioxid Redox Signal ; 18(14): 1713-22, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23121402

RESUMO

AIMS: Acetaminophen (APAP)-induced liver injury is mainly due to the excessive formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) through the formation of a reactive intermediate, N-acetyl-p-benzoquinone imine (NAPQI), in both humans and rodents. Here, we show that the indole-derived synthetic compound has a protective effect against APAP-induced liver injury in C57Bl/6 mice model. RESULTS: NecroX-7 decreased tert-butylhydroperoxide (t-BHP)- and APAP-induced cell death and ROS/RNS formation in HepG2 human hepatocarcinoma and primary mouse hepatocytes. In mice, NecroX-7 decreased APAP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and 3-nitrotyrosine (3-NT) formation, and also protected mice from APAP-induced liver injury and lethality by binding directly to NAPQI. The binding of NecroX-7 to NAPQI did not require any of cofactors or proteins. NecroX-7 could only scavenge NAPQI when hepatocellular GSH levels were very low. INNOVATION: NecroX-7 is an indole-derived potent antioxidant molecule, which can be bound to some types of radicals and especially NAPQI. It is well known that the NAPQI is a major intermediate of APAP, which causes necrosis of hepatocytes in rodents and humans. Thus, blocking NAPQI formation or eliminating NAPQI are novel strategies for the treatment or prevention of APAP-induced liver injury instead of GSH replenishment. CONCLUSION: Our data suggest that the indole-derivative, NecroX-7, directly binds to NAPQI when hepatic GSH levels are very low and the NAPQI-NecroX-7 complex is secreted to the blood from the liver. NecroX-7 shows more preventive and similar therapeutic effects against APAP-induced liver injury when compared to the effect of N-acetylcysteine in C57Bl/6 mice.


Assuntos
Acetaminofen/toxicidade , Antioxidantes/farmacologia , Benzoquinonas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Iminas/metabolismo , Compostos Orgânicos/farmacologia , Acetaminofen/metabolismo , Animais , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Compostos Orgânicos/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
J Biol Chem ; 287(50): 41875-87, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23074219

RESUMO

Cyclic AMP (cAMP) induces steroidogenic enzyme gene expression and stimulates testosterone production in Leydig cells. Phosphoenolpyruvate carboxykinase (PEPCK) is expressed in Leydig cells, but its role has not been defined. In this study, we found that PEPCK and glucose-6-phosphatase (Glc-6-Pase) are increased significantly following cAMP treatment of mouse Leydig cells. Moreover, cAMP treatment increased recruitment of the cAMP-response element-binding transcription factor and decreased recruitment of the corepressor DAX-1 on the pepck promoter. Furthermore, cAMP induced an increase in ATP that correlated with a decrease in phospho-AMP-activated protein kinase (AMPK). In contrast, knockdown or inhibition of PEPCK decreased ATP and increased phospho-AMPK. Treatment with an AMPK activator or overexpression of the constitutively active form of AMPK inhibited cAMP-induced steroidogenic enzyme promoter activities and gene expression. Liver receptor homolog-1 (LRH-1) was involved in cAMP-induced steroidogenic enzyme gene expression but was inhibited by AMPK activation in Leydig cells. Additionally, inhibition or knockdown of PEPCK and Glc-6-Pase decreased cAMP-mediated induction of steroidogenic enzyme gene expression and steroidogenesis. Finally, pubertal mouse (8-week-old) testes and human chorionic gonadotropin-induced prepubertal mouse testes showed increased PEPCK and Glc-6-Pase gene expression. Taken together, these results suggest that induction of PEPCK and Glc-6-Pase by cAMP plays an important role in Leydig cell steroidogenesis.


Assuntos
Glucose-6-Fosfatase/biossíntese , Células Intersticiais do Testículo/enzimologia , Fosfoenolpiruvato Carboxiquinase (ATP)/biossíntese , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , AMP Cíclico/genética , AMP Cíclico/metabolismo , Receptor Nuclear Órfão DAX-1/genética , Receptor Nuclear Órfão DAX-1/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucose-6-Fosfatase/genética , Células HeLa , Humanos , Células Intersticiais do Testículo/citologia , Masculino , Camundongos , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Regiões Promotoras Genéticas/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
9.
Cell Metab ; 16(2): 274-83, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22819524

RESUMO

Although substantial progress has been made in understanding the mechanisms underlying the expression of mtDNA-encoded polypeptides, the regulatory factors involved in mitoribosome-mediated synthesis and simultaneous insertion of mitochondrial oxidative phosphorylation (OXPHOS) polypeptides into the inner membrane of mitochondria are still unclear. In the present study, disruption of the mouse Crif1 gene, which encodes a mitochondrial protein, resulted in a profound deficiency in OXPHOS caused by the disappearance of OXPHOS subunits and complexes in vivo. CRIF1 was associated with large mitoribosomal subunits that were located close to the polypeptide exit tunnel, and the elimination of CRIF1 led to both aberrant synthesis and defective insertion of mtDNA-encoded nascent OXPHOS polypeptides into the inner membrane. CRIF1 interacted with nascent OXPHOS polypeptides and molecular chaperones, e.g., Tid1. Taken together, these results suggest that CRIF1 plays a critical role in the integration of OXPHOS polypeptides into the mitochondrial membrane in mammals.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Peptídeos/metabolismo , Animais , Western Blotting , Fracionamento Celular , Imuno-Histoquímica , Camundongos
10.
Diabetes ; 61(10): 2484-94, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22698918

RESUMO

Growth hormone (GH) is a counter-regulatory hormone that plays an important role in preventing hypoglycemia during fasting. Because inhibition of the pyruvate dehydrogenase complex (PDC) by pyruvate dehydrogenase kinase 4 (PDK4) conserves substrates for gluconeogenesis, we tested whether GH increases PDK4 expression in liver by a signaling pathway sensitive to inhibition by metformin. The effects of GH and metformin were determined in the liver of wild-type, small heterodimer partner (SHP)-, PDK4-, and signal transducer and activator of transcription 5 (STAT5)-null mice. Administration of GH in vivo increased PDK4 expression via a pathway dependent on STAT5 phosphorylation. Metformin inhibited the induction of PDK4 expression by GH via a pathway dependent on AMP-activated protein kinase (AMPK) and SHP induction. The increase in PDK4 expression and PDC phosphorylation by GH was reduced in STAT5-null mice. Metformin decreased GH-mediated induction of PDK4 expression and metabolites in wild-type but not in SHP-null mice. In primary hepatocytes, dominant-negative mutant-AMPK and SHP knockdown prevented the inhibitory effect of metformin on GH-stimulated PDK4 expression. SHP directly inhibited STAT5 association on the PDK4 gene promoter. Metformin inhibits GH-induced PDK4 expression and metabolites via an AMPK-SHP-dependent pathway. The metformin-AMPK-SHP network may provide a novel therapeutic approach for the treatment of hepatic metabolic disorders induced by the GH-mediated pathway.


Assuntos
Expressão Gênica/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Metformina/farmacologia , Proteínas Serina-Treonina Quinases/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Fígado/metabolismo , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
J Lipid Res ; 53(7): 1277-86, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22493094

RESUMO

In this study, we demonstrate that activation of AMP-activated protein kinase (AMPK) with glabridin alleviates adiposity and hyperlipidemia in obesity. In several obese rodent models, glabridin decreased body weight and adiposity with a concomitant reduction in fat cell size. Further, glabridin ameliorated fatty liver and plasma levels of triglyceride and cholesterol. In accordance with these findings, glabridin suppressed the expression of lipogenic genes such as sterol regulatory element binding transcription factor (SREBP)-1c, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and stearoyl-CoA desaturase (SCD)-1 in white adipose tissues and liver, whereas it elevated the expression of fatty acid oxidation genes such as carnitine palmitoyl transferase (CPT)1, acyl-CoA oxidase (ACO), and peroxisome proliferator-activated receptor (PPAR)α in muscle. Moreover, glabridin enhanced phosphorylation of AMPK in muscle and liver and promoted fatty acid oxidation by modulating mitochondrial activity. Together, these data suggest that glabridin is a novel AMPK activator that would exert therapeutic effects in obesity-related metabolic disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adiposidade/efeitos dos fármacos , Isoflavonas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Fenóis/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Ácidos Graxos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Obesidade/metabolismo , Fosforilação/efeitos dos fármacos
12.
Free Radic Biol Med ; 52(5): 880-8, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22227174

RESUMO

NADPH oxidase (NOX) is a predominant source of reactive oxygen species (ROS), and the activity of NOX, which uses NADPH as a common rate-limiting substrate, is upregulated by prolonged dietary salt intake. ß-Lapachone (ßL), a well-known substrate of NAD(P)H:quinone oxidoreductase 1 (NQO1), decreases the cellular NAD(P)H/NAD(P)(+) ratio via activation of NQO1. In this study, we evaluated whether NQO1 activation by ßL modulates salt-induced renal injury associated with NOX-derived ROS regulation in an animal model. Dahl salt-sensitive (DS) rats fed a high-salt (HS) diet were used to investigate the renoprotective effect of NQO1 activation. ßL treatment significantly lowered the cellular NAD(P)H:NAD(P)(+) ratio and dramatically reduced NOX activity in the kidneys of HS diet-fed DS rats. In accordance with this, total ROS production and expression of oxidative adducts also decreased in the ßL-treated group. Furthermore, HS diet-induced proteinuria and glomerular damage were markedly suppressed, and inflammation, fibrosis, and apoptotic cell death were significantly diminished by ßL treatment. This study is the first to demonstrate that activation of NQO1 has a renoprotective effect that is mediated by NOX activity via modulation of the cellular NAD(P)H:NAD(P)(+) ratio. These results provide strong evidence that NQO1 might be a new therapeutic target for the prevention of salt-induced renal injury.


Assuntos
Injúria Renal Aguda/prevenção & controle , Ativadores de Enzimas/farmacologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , NADPH Oxidases/metabolismo , Naftoquinonas/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Ativação Enzimática , Ativadores de Enzimas/uso terapêutico , Fibrose , Inflamação/metabolismo , Inflamação/prevenção & controle , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/enzimologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , NADP/metabolismo , Naftoquinonas/uso terapêutico , Oxirredução , Estresse Oxidativo , Ratos , Ratos Endogâmicos Dahl , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio
13.
Circ Res ; 104(7): 842-50, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19229058

RESUMO

Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are important pathogenic mechanisms in atherosclerosis and restenosis after vascular injury. In this study, we investigated the effects of beta-lapachone (betaL) (3,4-Dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran-5,6-dione), which is a potent antitumor agent that stimulates NAD(P)H:quinone oxidoreductase (NQO)1 activity, on neointimal formation in animals given vascular injury and on the proliferation of VSMCs cultured in vitro. betaL significantly reduced the neointimal formation induced by balloon injury. betaL also dose-dependently inhibited the FCS- or platelet-derived growth factor-induced proliferation of VSMCs by inhibiting G(1)/S phase transition. betaL increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase 1 in rat and human VSMCs. Chemical inhibitors of AMPK or dominant-negative AMPK blocked the betaL-induced suppression of cell proliferation and the G(1) cell cycle arrest, in vitro and in vivo. The activation of AMPK in VSMCs by betaL is mediated by LKB1 in the presence of NQO1. Taken together, these results show that betaL inhibits VSMCs proliferation via the NQO1 and LKB1-dependent activation of AMPK. These observations provide the molecular basis that pharmacological stimulation of NQO1 activity is a new therapy for the treatment of vascular restenosis and/or atherosclerosis which are caused by proliferation of VSMCs.


Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Estenose das Carótidas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Lesões das Artérias Carótidas/enzimologia , Lesões das Artérias Carótidas/patologia , Estenose das Carótidas/enzimologia , Estenose das Carótidas/patologia , Ciclo Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ativação Enzimática , Ativadores de Enzimas/toxicidade , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Hiperplasia , Masculino , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/genética , Naftoquinonas/toxicidade , Fosforilação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína do Retinoblastoma/metabolismo , Prevenção Secundária , Fatores de Tempo , Proteína Supressora de Tumor p53/metabolismo , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/enzimologia , Túnica Íntima/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...