Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(5): 1774-1786, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37667526

RESUMO

PURPOSE: Software has a substantial impact on quantitative perfusion MRI values. The lack of generally accepted implementations, code sharing and transparent testing reduces reproducibility, hindering the use of perfusion MRI in clinical trials. To address these issues, the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI) aimed to establish a community-led, centralized repository for sharing open-source code for processing contrast-based perfusion imaging, incorporating an open-source testing framework. METHODS: A repository was established on the OSIPI GitHub website. Python was chosen as the target software language. Calls for code contributions were made to OSIPI members, the ISMRM Perfusion Study Group, and publicly via OSIPI websites. An automated unit-testing framework was implemented to evaluate the output of code contributions, including visual representation of the results. RESULTS: The repository hosts 86 implementations of perfusion processing steps contributed by 12 individuals or teams. These cover all core aspects of DCE- and DSC-MRI processing, including multiple implementations of the same functionality. Tests were developed for 52 implementations, covering five analysis steps. For T1 mapping, signal-to-concentration conversion and population AIF functions, different implementations resulted in near-identical output values. For the five pharmacokinetic models tested (Tofts, extended Tofts-Kety, Patlak, two-compartment exchange, and two-compartment uptake), differences in output parameters were observed between contributions. CONCLUSIONS: The OSIPI DCE-DSC code repository represents a novel community-led model for code sharing and testing. The repository facilitates the re-use of existing code and the benchmarking of new code, promoting enhanced reproducibility in quantitative perfusion imaging.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Meios de Contraste/farmacocinética , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Perfusão , Imagem de Perfusão/métodos
2.
Cancers (Basel) ; 14(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36497342

RESUMO

Stereotactic body radiation therapy (SBRT) is an emerging treatment for liver cancers whereby large doses of radiation can be delivered precisely to target lesions in 3-5 fractions. The target dose is limited by the dose that can be safely delivered to the non-tumour liver, which depends on the baseline liver functional reserve. Current liver SBRT guidelines assume uniform liver function in the non-tumour liver. However, the assumption of uniform liver function is false in liver disease due to the presence of cirrhosis, damage due to previous chemo- or ablative therapies or irradiation, and fatty liver disease. Anatomical information from magnetic resonance imaging (MRI) is increasingly being used for SBRT planning. While its current use is limited to the identification of target location and size, functional MRI techniques also offer the ability to quantify and spatially map liver tissue microstructure and function. This review summarises and discusses the advantages offered by functional MRI methods for SBRT treatment planning and the potential for adaptive SBRT workflows.

3.
Cancer Imaging ; 22(1): 71, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536464

RESUMO

BACKGROUND: Biologically targeted radiation therapy treatment planning requires voxel-wise characterisation of tumours. Dynamic contrast enhanced (DCE) DCE MRI has shown promise in defining voxel-level biological characteristics. In this study we consider the relative value of qualitative, semi-quantitative and quantitative assessment of DCE MRI compared with diffusion weighted imaging (DWI) and T2-weighted (T2w) imaging to detect prostate cancer at the voxel level. METHODS: Seventy prostate cancer patients had multiparametric MRI prior to radical prostatectomy, including T2w, DWI and DCE MRI. Apparent Diffusion Coefficient (ADC) maps were computed from DWI, and semi-quantitative and quantitative parameters computed from DCE MRI. Tumour location and grade were validated with co-registered whole mount histology. Kolmogorov-Smirnov tests were applied to determine whether MRI parameters in tumour and benign voxels were significantly different. Cohen's d was computed to quantify the most promising biomarkers. The Parker and Weinmann Arterial Input Functions (AIF) were compared for their ability to best discriminate between tumour and benign tissue. Classifier models were used to determine whether DCE MRI parameters improved tumour detection versus ADC and T2w alone. RESULTS: All MRI parameters had significantly different data distributions in tumour and benign voxels. For low grade tumours, semi-quantitative DCE MRI parameter time-to-peak (TTP) was the most discriminating and outperformed ADC. For high grade tumours, ADC was the most discriminating followed by DCE MRI parameters Ktrans, the initial rate of enhancement (IRE), then TTP. Quantitative parameters utilising the Parker AIF better distinguished tumour and benign voxel values than the Weinmann AIF. Classifier models including DCE parameters versus T2w and ADC alone, gave detection accuracies of 78% versus 58% for low grade tumours and 85% versus 72% for high grade tumours. CONCLUSIONS: Incorporating DCE MRI parameters with DWI and T2w gives improved accuracy for tumour detection at a voxel level. DCE MRI parameters should be used to spatially characterise tumour biology for biologically targeted radiation therapy treatment planning.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Masculino , Humanos , Biomarcadores Tumorais , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Meios de Contraste
4.
J Magn Reson Imaging ; 56(4): 1042-1052, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35224803

RESUMO

BACKGROUND: Three-dimensional variable flip angle (VFA) methods are commonly used for T1 mapping of the liver, but there is no data on the accuracy, repeatability, and reproducibility of this technique in this organ in a multivendor setting. PURPOSE: To measure bias, repeatability, and reproducibility of VFA T1 mapping in the liver. STUDY TYPE: Prospective observational. POPULATION: Eight healthy volunteers, four women, with no known liver disease. FIELD STRENGTH/SEQUENCE: 1.5-T and 3.0-T; three-dimensional steady-state spoiled gradient echo with VFAs; Look-Locker. ASSESSMENT: Traveling volunteers were scanned twice each (30 minutes to 3 months apart) on six MRI scanners from three vendors (GE Healthcare, Philips Medical Systems, and Siemens Healthineers) at two field strengths. The maximum period between the first and last scans among all volunteers was 9 months. Volunteers were instructed to abstain from alcohol intake for at least 72 hours prior to each scan and avoid high cholesterol foods on the day of the scan. STATISTICAL TESTS: Repeated measures ANOVA, Student t-test, Levene's test of variances, and 95% significance level. The percent error relative to literature liver T1 in healthy volunteers was used to assess bias. The relative error (RE) due to intrascanner and interscanner variation in T1 measurements was used to assess repeatability and reproducibility. RESULTS: The 95% confidence interval (CI) on the mean bias and mean repeatability RE of VFA T1 in the healthy liver was 34 ± 6% and 10 ± 3%, respectively. The 95% CI on the mean reproducibility RE at 1.5 T and 3.0 T was 29 ± 7% and 25 ± 4%, respectively. DATA CONCLUSION: Bias, repeatability, and reproducibility of VFA T1 mapping in the liver in a multivendor setting are similar to those reported for breast, prostate, and brain. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Imagens de Fantasmas , Próstata , Reprodutibilidade dos Testes
5.
Mol Pharm ; 18(8): 2997-3009, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34283621

RESUMO

Physiologically based pharmacokinetic (PBPK) models are increasingly used in drug development to simulate changes in both systemic and tissue exposures that arise as a result of changes in enzyme and/or transporter activity. Verification of these model-based simulations of tissue exposure is challenging in the case of transporter-mediated drug-drug interactions (tDDI), in particular as these may lead to differential effects on substrate exposure in plasma and tissues/organs of interest. Gadoxetate, a promising magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 (OATP1B1) and multidrug resistance-associated protein 2 (MRP2). In this study, we developed a gadoxetate PBPK model and explored the use of liver-imaging data to achieve and refine in vitro-in vivo extrapolation (IVIVE) of gadoxetate hepatic transporter kinetic data. In addition, PBPK modeling was used to investigate gadoxetate hepatic tDDI with rifampicin i.v. 10 mg/kg. In vivo dynamic contrast-enhanced (DCE) MRI data of gadoxetate in rat blood, spleen, and liver were used in this analysis. Gadoxetate in vitro uptake kinetic data were generated in plated rat hepatocytes. Mean (%CV) in vitro hepatocyte uptake unbound Michaelis-Menten constant (Km,u) of gadoxetate was 106 µM (17%) (n = 4 rats), and active saturable uptake accounted for 94% of total uptake into hepatocytes. PBPK-IVIVE of these data (bottom-up approach) captured reasonably systemic exposure, but underestimated the in vivo gadoxetate DCE-MRI profiles and elimination from the liver. Therefore, in vivo rat DCE-MRI liver data were subsequently used to refine gadoxetate transporter kinetic parameters in the PBPK model (top-down approach). Active uptake into the hepatocytes refined by the liver-imaging data was one order of magnitude higher than the one predicted by the IVIVE approach. Finally, the PBPK model was fitted to the gadoxetate DCE-MRI data (blood, spleen, and liver) obtained with and without coadministered rifampicin. Rifampicin was estimated to inhibit active uptake transport of gadoxetate into the liver by 96%. The current analysis highlighted the importance of gadoxetate liver data for PBPK model refinement, which was not feasible when using the blood data alone, as is common in PBPK modeling applications. The results of our study demonstrate the utility of organ-imaging data in evaluating and refining PBPK transporter IVIVE to support the subsequent model use for quantitative evaluation of hepatic tDDI.


Assuntos
Meios de Contraste/farmacocinética , Gadolínio DTPA/farmacocinética , Fígado/diagnóstico por imagem , Fígado/metabolismo , Imageamento por Ressonância Magnética/métodos , Rifampina/farmacocinética , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Biomarcadores/metabolismo , Células Cultivadas , Meios de Contraste/administração & dosagem , Meios de Contraste/metabolismo , Interações Medicamentosas , Gadolínio DTPA/administração & dosagem , Gadolínio DTPA/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Modelos Animais , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Ratos , Rifampina/administração & dosagem , Rifampina/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-34060219

RESUMO

Magnetic resonance imaging (MRI) is increasingly used in the management of prostate cancer (PCa). Quantitative MRI (qMRI) parameters, derived from multi-parametric MRI, provide indirect measures of tumour characteristics such as cellularity, angiogenesis and hypoxia. Using Artificial Intelligence (AI), relevant information and patterns can be efficiently identified in these complex data to develop quantitative imaging biomarkers (QIBs) of tumour function and biology. Such QIBs have already demonstrated potential in the diagnosis and staging of PCa. In this review, we explore the role of these QIBs in monitoring treatment response during and after PCa radiotherapy (RT). Recurrence of PCa after RT is not uncommon, and early detection prior to development of metastases provides an opportunity for salvage treatments with curative intent. However, the current method of monitoring treatment response using prostate-specific antigen levels lacks specificity. QIBs, derived from qMRI and developed using AI techniques, can be used to monitor biological changes post-RT providing the potential for accurate and early diagnosis of recurrent disease.

7.
Magn Reson Imaging ; 59: 121-129, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30872166

RESUMO

BACKGROUND: Many translational MR biomarkers derive from measurements of the water proton longitudinal relaxation rate R1, but evidence for between-site reproducibility of R1 in small-animal MRI is lacking. OBJECTIVE: To assess R1 repeatability and multi-site reproducibility in phantoms for preclinical MRI. METHODS: R1 was measured by saturation recovery in 2% agarose phantoms with five nickel chloride concentrations in 12 magnets at 5 field strengths in 11 centres on two different occasions within 1-13 days. R1 was analysed in three different regions of interest, giving 360 measurements in total. Root-mean-square repeatability and reproducibility coefficients of variation (CoV) were calculated. Propagation of reproducibility errors into 21 translational MR measurements and biomarkers was estimated. Relaxivities were calculated. Dynamic signal stability was also measured. RESULTS: CoV for day-to-day repeatability (N = 180 regions of interest) was 2.34% and for between-centre reproducibility (N = 9 centres) was 1.43%. Mostly, these do not propagate to biologically significant between-centre error, although a few R1-based MR biomarkers were found to be quite sensitive even to such small errors in R1, notably in myocardial fibrosis, in white matter, and in oxygen-enhanced MRI. The relaxivity of aqueous Ni2+ in 2% agarose varied between 0.66 s-1 mM-1 at 3 T and 0.94 s-1 mM-1 at 11.7T. INTERPRETATION: While several factors affect the reproducibility of R1-based MR biomarkers measured preclinically, between-centre propagation of errors arising from intrinsic equipment irreproducibility should in most cases be small. However, in a few specific cases exceptional efforts might be required to ensure R1-reproducibility.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Sefarose/química , Água/química , Animais , Biomarcadores , Simulação por Computador , Camundongos , Níquel/química , Oxigênio , Prótons , Ratos , Análise de Regressão , Reprodutibilidade dos Testes
8.
Magn Reson Imaging ; 48: 115-121, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29306051

RESUMO

Measurements of the orientational dispersion of collagen fibers in articular cartilage were made using diffusion tensor imaging (DTI) and small-angle X-ray scattering (SAXS) on matched bovine articular cartilage samples. Thirteen pairs of samples were excised from bovine knee joints; each pair was taken from neighboring locations in the same bone. One sample from each pair was used for DTI measurements and the other for SAXS measurements. Fractional anisotropy (FA) values were calculated from the DTI data both for the individual imaging voxels and for whole regions of interest (ROI). The FA values were used as a measure of fiber dispersion and compared to the ellipticities of the fiber orientation distributions obtained from SAXS. Neither the spatially-resolved FA values nor whole-ROI FA values showed any correlation with SAXS ellipticities. We attribute the lack of DTI-SAXS correlation to two principal factors: (1) the significant difference in the imaging resolution of the two techniques; and (2) the inherent limitations of both the SAXS data analysis methodology and the diffusion tensor model in the case of multi-modal fiber orientation distributions. We discuss how these factors could be overcome in future work.


Assuntos
Cartilagem Articular/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Colágenos Fibrilares , Espalhamento a Baixo Ângulo , Animais , Bovinos , Imagem de Difusão por Ressonância Magnética , Matriz Extracelular , Articulação do Joelho , Modelos Animais , Raios X
9.
PLoS One ; 9(12): e115288, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25545955

RESUMO

Anisotropy of transverse proton spin relaxation in collagen-rich tissues like cartilage and tendon is a well-known phenomenon that manifests itself as the "magic-angle" effect in magnetic resonance images of these tissues. It is usually attributed to the non-zero averaging of intra-molecular dipolar interactions in water molecules bound to oriented collagen fibers. One way to manipulate the contributions of these interactions to spin relaxation is by partially replacing the water in the cartilage sample with deuterium oxide. It is known that dipolar interactions in deuterated solutions are weaker, resulting in a decrease in proton relaxation rates. In this work, we investigate the effects of deuteration on the longitudinal and the isotropic and anisotropic contributions to transverse relaxation of water protons in bovine articular cartilage. We demonstrate that the anisotropy of transverse proton spin relaxation in articular cartilage is independent of the degree of deuteration, bringing into question some of the assumptions currently held over the origins of relaxation anisotropy in oriented tissues.


Assuntos
Cartilagem Articular/química , Óxido de Deutério/farmacologia , Prótons , Animais , Anisotropia , Cartilagem Articular/efeitos dos fármacos , Bovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...