Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 110: 230-237, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29471062

RESUMO

GNAS mutations leading to constitutively active stimulatory G protein alpha-subunit (Gsα) cause different tumors, fibrous dysplasia of bone, and McCune-Albright syndrome, which are typically not associated with short stature. Enhanced signaling of the parathyroid hormone/parathyroid hormone-related peptide receptor, which couples to multiple G proteins including Gsα, leads to short bones with delayed endochondral ossification. It has remained unknown whether constitutive Gsα activity also impairs bone growth. Here we generated mice expressing a constitutively active Gsα mutant (Gsα-R201H) conditionally upon Cre recombinase (cGsαR201H mice). Gsα-R201H was expressed in cultured bone marrow stromal cells from cGsαR201H mice upon adenoviral-Cre transduction. When crossed with mice in which Cre is expressed in a tamoxifen-regulatable fashion (CAGGCre-ER™), tamoxifen injection resulted in mosaic expression of the transgene in double mutant offspring. We then crossed the cGsαR201H mice with Prx1-Cre mice, in which Cre is expressed in early limb-bud mesenchyme. The double mutant offspring displayed short limbs at birth, with narrow hypertrophic chondrocyte zones in growth plates and delayed formation of secondary ossification center. Consistent with enhanced Gsα signaling, bone marrow stromal cells from these mice demonstrated increased levels of c-fos mRNA. Our findings indicate that constitutive Gsα activity during limb development disrupts endochondral ossification and bone growth. Given that Gsα haploinsufficiency also leads to short bones, as in patients with Albright's hereditary osteodystrophy, these results suggest that a tight control of Gsα activity is essential for normal growth plate physiology.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Animais , Desenvolvimento Ósseo/genética , Desenvolvimento Ósseo/fisiologia , Células Cultivadas , Cromograninas/genética , Cromograninas/metabolismo , AMP Cíclico/metabolismo , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Integrases/genética , Integrases/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Transgênicos , Osteogênese/genética , Osteogênese/fisiologia , Pseudo-Hipoparatireoidismo/genética , Pseudo-Hipoparatireoidismo/metabolismo , Tamoxifeno/farmacologia
2.
Bone ; 103: 177-187, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28694163

RESUMO

The murine Gnas (human GNAS) locus gives rise to Gαs and different splice variants thereof. The Gαs promoter is not methylated thus allowing biallelic expression in most tissues. In contrast, the alternative first Gnas/GNAS exons and their promoters undergo parent specific methylation, which limits transcription to the non-methylated allele. Pseudohypoparathyroidism type Ia (PHP1A) or type Ib (PHP1B) are caused by heterozygous maternal GNAS mutations suggesting that little or no Gαs is derived in some tissues from the non-mutated paternal GNAS thereby causing hormonal resistance. Previous data had indicated that Gαs is mainly derived from the maternal Gnas allele in brown adipose tissue (BAT) of newborn mice, yet it is biallelically expressed in adult BAT. This suggested that paternal Gαs expression is regulated by an unknown factor(s) that varies considerably with age. To extend these findings, we now used a strain-specific SNP in Gnas exon 11 (rs13460569) for evaluation of parent-specific Gαs expression through the densitometric quantification of BanII-digested RT-PCR products and digital droplet PCR (ddPCR). At all investigated ages, Gαs transcripts were derived in BAT predominantly from the maternal Gnas allele, while kidney and liver showed largely biallelic Gαs expression. Only low or undetectable levels of other paternally Gnas-derived transcripts were observed, making it unlikely that these are involved in regulating paternal Gαs expression. Our findings suggest that a cis-acting factor could be implicated in reducing paternal Gαs expression in BAT and presumably in proximal renal tubules, thereby causing PTH-resistance if the maternal GNAS/Gnas allele is mutated.


Assuntos
Tecido Adiposo Marrom/metabolismo , Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica/genética , Alelos , Animais , Feminino , Masculino , Camundongos
3.
J Bone Miner Res ; 32(4): 776-783, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28084650

RESUMO

Pseudohypoparathyroidism type Ib (PHP1B) is characterized primarily by resistance to parathyroid hormone (PTH) and thus hypocalcemia and hyperphosphatemia, in most cases without evidence for Albright hereditary osteodystrophy (AHO). PHP1B is associated with epigenetic changes at one or several differentially-methylated regions (DMRs) within GNAS, which encodes the α-subunit of the stimulatory G protein (Gsα) and splice variants thereof. Heterozygous, maternally inherited STX16 or GNAS deletions leading to isolated loss-of-methylation (LOM) at exon A/B alone or at all maternal DMRs are the cause of autosomal dominant PHP1B (AD-PHP1B). In this study, we analyzed three affected individuals, the female proband and her two sons. All three revealed isolated LOM at GNAS exon A/B, whereas the proband's healthy maternal grandmother and uncle showed normal methylation at this locus. Haplotype analysis was consistent with linkage to the STX16/GNAS region, yet no deletion could be identified. Whole-genome sequencing of one of the patients revealed a large heterozygous inversion (1,882,433 bp). The centromeric breakpoint of the inversion is located 7,225 bp downstream of GNAS exon XL, but its DMR showed no methylation abnormality, raising the possibility that the inversion disrupts a regulatory element required only for establishing or maintaining exon A/B methylation. Because our three patients presented phenotypes consistent with PHP1B, and not with PHP1A, the Gsα promoter is probably unaffected by the inversion. Our findings expand the spectrum of genetic mutations that lead to LOM at exon A/B alone and thus biallelic expression of the transcript derived from this alternative first GNAS exon. © 2017 American Society for Bone and Mineral Research.


Assuntos
Cromograninas/genética , Transtornos Cromossômicos/genética , Inversão Cromossômica , Éxons , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Genes Dominantes , Heterozigoto , Pseudo-Hipoparatireoidismo/genética , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Sintaxina 16/genética , Pseudo-Hipoparatireoidismo
4.
J Bone Miner Res ; 31(4): 796-805, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26479409

RESUMO

Proximal tubular resistance to parathyroid hormone (PTH) resulting in hypocalcemia and hyperphosphatemia are preeminent abnormalities in pseudohypoparathyroidism type Ib (PHP1B), but resistance toward other hormones as well as variable features of Albright's Hereditary Osteodystrophy (AHO) can occur also. Genomic DNA from PHP1B patients shows epigenetic changes at one or multiple differentially methylated regions (DMRs) within GNAS, the gene encoding Gαs and splice variants thereof. In the autosomal dominant disease variant, these methylation abnormalities are caused by deletions in STX16 or GNAS on the maternal allele. The molecular defect(s) leading to sporadic PHP1B (sporPHP1B) remains in most cases unknown and we therefore analyzed 60 sporPHP1B patients and available family members by microsatellite markers, single nucleotide polymorphisms (SNPs), multiplex ligation-dependent probe amplification (MLPA), and methylation-specific MLPA (MS-MLPA). All investigated cases revealed broad GNAS methylation changes, but no evidence for inheritance of two paternal chromosome 20q alleles. Some patients with partial epigenetic modifications in DNA from peripheral blood cells showed more complete GNAS methylation changes when testing their immortalized lymphoblastoid cells. Analysis of siblings and children of sporPHP1B patients provided no evidence for an abnormal mineral ion regulation and no changes in GNAS methylation. Only one patient revealed, based on MLPA and microsatellite analyses, evidence for an allelic loss, which resulted in the discovery of two adjacent, maternally inherited deletions (37,597 and 1427 bp, respectively) that remove the area between GNAS antisense exons 3 and 5, including exon NESP. Our findings thus emphasize that the region comprising antisense exons 3 and 4 is required for establishing all maternal GNAS methylation imprints. The genetic defect(s) leading in sporPHP1B to epigenetic GNAS changes and thus PTH-resistance remains unknown, but it seems unlikely that this disease variant is caused by heterozygous inherited or de novo mutations involving GNAS.


Assuntos
Alelos , Sequência de Bases , Cromograninas/genética , Cromograninas/metabolismo , Família , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Pseudo-Hipoparatireoidismo/genética , Pseudo-Hipoparatireoidismo/metabolismo , Deleção de Sequência , Adolescente , Linhagem Celular Transformada , Criança , Metilação de DNA , Epigênese Genética , Éxons , Feminino , Humanos , Masculino , Sintaxina 16/genética , Sintaxina 16/metabolismo , Pseudo-Hipoparatireoidismo
5.
Bone ; 71: 53-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25464124

RESUMO

CONTEXT: Loss-of-function GNAS mutations lead to hormone resistance and Albright's hereditary osteodystrophy (AHO) when maternally inherited, i.e. pseudohypoparathyroidism-Ia (PHPIa), but cause AHO alone when located on the paternal allele, i.e. pseudoPHP (PPHP). OBJECTIVE: We aimed to establish the molecular diagnosis in a patient with AHO and evidence of hormone resistance. CASE: The patient is a female who presented at the age of 13.5years with short stature and multiple AHO features. No evidence for TSH or gonadotropin-resistance was present. Serum calcium and vitamin D levels were normal. However, serum PTH was elevated on multiple occasions (64-178pg/mL, normal: 9-52) and growth hormone response to clonidine or L-DOPA was blunted, suggesting hormone resistance and PHP-Ia. The patient had diminished erythrocyte Gsα activity and a novel heterozygous GNAS mutation (c.328 G>C; p.A109P). The mother lacked the mutation, and the father's DNA was not available. Hence, a diagnosis of PPHP also appeared possible, supported by low birth weight and a lack of AHO features associated predominantly with PHP-Ia, i.e. obesity and cognitive impairment. To determine the parental origin of the mutation, we amplified the paternally expressed A/B and biallelically expressed Gsα transcripts from the patient's peripheral blood RNA. While both wild-type and mutant nucleotides were detected in the Gsα amplicon, only the mutant nucleotide was present in the A/B amplicon, indicating that the mutation was paternal. CONCLUSION: These findings suggest that PTH and other hormone resistance may not be an exclusive feature of PHP-Ia and could also be observed in patients with PPHP.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Mutação/genética , Pseudopseudo-Hipoparatireoidismo/genética , Adolescente , Alelos , Cálcio/sangue , Cromograninas , Análise Mutacional de DNA , Pai , Feminino , Humanos , Recém-Nascido , Masculino , Hormônio Paratireóideo/sangue , Pseudopseudo-Hipoparatireoidismo/sangue , Vitamina D/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...