Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 128: 187-197, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30738798

RESUMO

AIMS: The chemokine stromal derived factor-1α (SDF-1α) is known to protect the heart acutely from ischaemia-reperfusion injury via its cognate receptor, CXCR4. However, the timing and cellular location of this effect, remains controversial. METHODS AND RESULTS: Wild type male and female mice were subjected to 40 min LAD territory ischaemia in vivo and injected with either saline (control) or SDF-1α prior to 2 h reperfusion. Infarct size as a proportion of area at risk was assessed histologically using Evans blue and triphenyltetrazolium chloride. Our results confirm the cardioprotective effect of exogenous SDF-1α in mouse ischaemia-reperfusion injury and, for the first time, show protection when SDF-1α is delivered just prior to reperfusion, which has important therapeutic implications. The role of cell type was examined using the same in vivo ischaemia-reperfusion protocol in cardiomyocyte- and endothelial-specific CXCR4-null mice, and by Western blot analysis of endothelial cells treated in vitro. These experiments demonstrated that the acute infarct-sparing effect is mediated by endothelial cells, possibly via the signalling kinases Erk1/2 and PI3K/Akt. Unexpectedly, cardiomyocyte-specific deletion of CXCR4 was found to be cardioprotective per se. RNAseq analysis indicated altered expression of the mitochondrial protein co-enzyme Q10b in these mice. CONCLUSIONS: Administration of SDF-1α is cardioprotective when administered prior to reperfusion and may, therefore, have clinical utility. SDF-1α-CXCR4-mediated cardioprotection from ischaemia-reperfusion injury is contingent on the cellular location of CXCR4 activation. Specifically, cardioprotection is mediated by endothelial signalling, while cardiomyocyte-specific deletion of CXCR4 has an infarct-sparing effect per se.


Assuntos
Quimiocina CXCL12/genética , Coração/efeitos dos fármacos , Receptores CXCR4/genética , Traumatismo por Reperfusão/terapia , Animais , Quimiocina CXCL12/farmacocinética , Modelos Animais de Doenças , Endotélio/efeitos dos fármacos , Endotélio/patologia , Coração/fisiopatologia , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Substâncias Protetoras , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos
2.
Basic Res Cardiol ; 112(6): 66, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29043508

RESUMO

Ischemic preconditioning (IPC) limits myocardial infarct size through the activation of the PI3K-Akt signal cascade; however, little is known about the roles of individual PI3K isoforms in cardioprotection. We aimed, therefore, to elucidate the role of the PI3Kα isoform in cardioprotection Pharmacological PI3Kα inhibition was assessed in isolated-perfused mouse hearts subjected to ischemia/reperfusion injury (IRI), either during the IPC procedure or at reperfusion. PI3Kα inhibition abrogated the IPC-induced protective effect at reperfusion, but not when given only during the IPC protocol. These results were confirmed in an in vivo model. Moreover, pharmacological PI3Kα activation by insulin at reperfusion was sufficient to confer cardioprotection against IRI. In addition, PI3Kα was shown to be expressed and activated in mouse cardiomyocytes, mouse cardiac endothelial cells, as well as in mouse and human heart tissue. Furthermore, PI3Kα was shown to mediate its effect though the inhibition of mitochondrial permeability transition pore opening. In conclusion, PI3Kα activity is required during the early reperfusion phase to reduce myocardial infarct size. This suggests that strategies specifically enhancing the α isoform of PI3K at reperfusion promote tissue salvage and as such, and could provide a direct target for clinical treatment of IRI.


Assuntos
Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Cardiotônicos/farmacologia , Humanos , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
3.
PLoS One ; 12(4): e0174447, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28379992

RESUMO

BACKGROUND: Stromal derived factor-1α (SDF-1α/CXCL12) is a chemokine that is up-regulated in diseases characterised by tissue hypoxia, including myocardial infarction, ischaemic cardiomyopathy and remote ischaemic conditioning (RIC), a technique of cyclical, non-injurious ischaemia applied remote from the heart that protects the heat from lethal ischaemia-reperfusion injury. Accordingly, there is considerable interest in SDF-1α as a potential biomarker of such conditions. However, SDF-1α is rapidly degraded and inactivated by dipeptidyl peptidase 4 and other peptidases, and the kinetics of intact SDF-1α remain unknown. METHODS & RESULTS: To facilitate investigation of full-length SDF-1α we established an ELISA using a novel recombinant human antibody we developed called HCI.SDF1. HCI.SDF1 is specific to the N-terminal sequence of all isoforms of SDF-1 and has a comparable KD to commercially available antibodies. Together with a detection antibody specific to the α-isoform, HCI.SDF1 was used to specifically quantify full-length SDF-1α in blood for the first time. Using RIC applied to the hind limb of Sprague-Dawley rats or the arms of healthy human volunteers, we demonstrate an increase in SDF-1α using a commercially available antibody, as previously reported, but an unexpected decrease in full-length SDF-1α after RIC in both species. CONCLUSIONS: We report for the first time the development of a novel recombinant antibody specific to full-length SDF-1. Applied to RIC, we demonstrate a significant decrease in SDF-1α that is at odds with the literature and suggests a need to investigate the kinetics of full-length SDF-1α in conditions characterised by tissue hypoxia.


Assuntos
Anticorpos/imunologia , Quimiocina CXCL12/imunologia , Animais , Biomarcadores/sangue , Western Blotting , Quimiocina CXCL12/sangue , Dipeptidil Peptidase 4/sangue , Ensaio de Imunoadsorção Enzimática , Hipóxia/sangue , Hipóxia/diagnóstico , Hipóxia/metabolismo , Isquemia/sangue , Isquemia/diagnóstico , Isquemia/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...