Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 232(2): e13623, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33559388

RESUMO

AIM: We examined if tonic γ-aminobutyric acid (GABA)-activated currents in primary hippocampal neurons were modulated by insulin in wild-type and tg-APPSwe mice, an Alzheimer's disease (AD) model. METHODS: GABA-activated currents were recorded in dentate gyrus (DG) granule cells and CA3 pyramidal neurons in hippocampal brain slices, from 8 to 10 weeks old (young) wild-type mice and in dorsal DG granule cells in adult, 5-6 and 10-12 (aged) months old wild-type and tg-APPSwe mice, in the absence or presence of insulin, by whole-cell patch-clamp electrophysiology. RESULTS: In young mice, insulin (1 nmol/L) enhanced the total spontaneous inhibitory postsynaptic current (sIPSCT ) density in both dorsal and ventral DG granule cells. The extrasynaptic current density was only increased by insulin in dorsal CA3 pyramidal neurons. In absence of action potentials, insulin enhanced DG granule cells and dorsal CA3 pyramidal neurons miniature IPSC (mIPSC) frequency, consistent with insulin regulation of presynaptic GABA release. sIPSCT densities in DG granule cells were similar in wild-type and tg-APPSwe mice at 5-6 months but significantly decreased in aged tg-APPSwe mice where insulin normalized currents to wild-type levels. The extrasynaptic current density was increased in tg-APPSwe mice relative to wild-type littermates but, only in aged tg-APPSwe mice did insulin decrease and normalize the current. CONCLUSION: Insulin effects on GABA signalling in hippocampal neurons are selective while multifaceted and context-based. Not only is the response to insulin related to cell-type, hippocampal axis-location, age of animals and disease but also to the subtype of neuronal inhibition involved, synaptic or extrasynaptic GABAA receptors-activated currents.


Assuntos
Doença de Alzheimer , Animais , Hipocampo , Insulina/farmacologia , Camundongos , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico
2.
Hippocampus ; 30(11): 1146-1157, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32533811

RESUMO

The hippocampus is a medial temporal lobe structure in the brain and is widely studied for its role in memory and learning, in particular, spacial memory and emotional responses. It was thought to be a homogenous structure but emerging evidence shows differentiation along the dorsoventral axis and even microdomains for functional and cellular markers. We have examined in two cell-types of the hippocampal projection neurons, the dentate gyrus (DG) granule cells and CA3 pyramidal neurons, if the GABA-activated tonic current density varied between the dorsal (septal) and the ventral (temporal) poles of the male mouse hippocampus. Tonic synaptic currents, arising from spontaneous and miniature inhibitory postsynaptic currents (sIPSC, mIPSC), and extrasynaptic tonic currents were evaluated. The results revealed different levels of sIPSC but not mIPSC density between the dorsal and ventral hippocampal neurons for both the DG granule cells and the CA3 pyramidal neurons. The extrasynaptic tonic current density was larger in the DG granule cells as compared to the CA3 pyramidal neurons but did not vary between the dorsal and ventral regions. IPSC bursting was observed in both cell-types in the ventral hippocampus but was more common in the CA3 pyramidal neurons. Only in the dorsal DG granule cells was the level of the sIPSC and mIPSC density similar. The results indicate that the tonic GABAergic inhibition is particularly strong in the ventral hippocampal DG granule cells and enhanced in the dorsal as compared to the ventral hippocampal CA3 pyramidal neurons.


Assuntos
Região CA3 Hipocampal/fisiologia , Giro Denteado/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Células Piramidais/fisiologia , Receptores de GABA-A/fisiologia , Sinapses/fisiologia , Animais , Fórnice/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Potenciais Sinápticos/fisiologia , Ácido gama-Aminobutírico/fisiologia
3.
PLoS One ; 13(12): e0208981, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30543678

RESUMO

Calcium (Ca2+) is an important ion in physiology and is found both outside and inside cells. The intracellular concentration of Ca2+ is tightly regulated as it is an intracellular signal molecule and can affect a variety of cellular processes. In immune cells Ca2+ has been shown to regulate e.g. gene transcription, cytokine secretion, proliferation and migration. Ca2+ can enter the cytoplasm either from intracellular stores or from outside the cells when Ca2+ permeable ion channels in the plasma membrane open. The Ca2+ release-activated (CRAC) channel is the most prominent Ca2+ ion channel in the plasma membrane. It is formed by ORAI1-3 and the channel is opened by the endoplasmic reticulum Ca2+ sensor proteins stromal interaction molecules (STIM) 1 and 2. Another group of Ca2+ channels in the plasma membrane are the voltage-gated Ca2+ (CaV) channels. We examined if a change in immunological tolerance is accompanied by altered ORAI, STIM and CaV gene expression in peripheral blood mononuclear cells (PBMCs) in pregnant women and in type 1 diabetic individuals. Our results show that in pregnancy and type 1 diabetes ORAI1-3 are up-regulated whereas STIM1 and 2 are down-regulated in pregnancy but only STIM2 in type 1 diabetes. Expression of L-, P/Q-, R- and T-type voltage-gated Ca2+ channels was detected in the PBMCs where the CaV2.3 gene was up-regulated in pregnancy and type 1 diabetes whereas the CaV 2.1 and CaV3.2 genes were up-regulated only in pregnancy and the CaV1.3 gene in type 1 diabetes. The results are consistent with that expression of ORAI, STIM and CaV genes correlate with a shift in immunological status of the individual in health, as during pregnancy, and in the autoimmune disease type 1 diabetes. Whether the changes are in general protective or in type 1 diabetes include some pathogenic components remains to be clarified.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Diabetes Mellitus Tipo 1/genética , Regulação da Expressão Gênica , Leucócitos Mononucleares/metabolismo , Adolescente , Adulto , Cálcio/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/sangue , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...