Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 11(1): 8, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34974529

RESUMO

Lead-halide perovskites are highly promising for various optoelectronic applications, including laser devices. However, fundamental photophysics explaining the coherent-light emission from this material system is so intricate and often the subject of debate. Here, we systematically investigate photoluminescence properties of all-inorganic perovskite microcavity at room temperature and discuss the excited state and the light-matter coupling regime depending on excitation density. Angle-resolved photoluminescence clearly exhibits that the microcavity system shows a transition from weak coupling regime to strong coupling regime, revealing the increase in correlated electron-hole pairs. With pumping fluence above the threshold, the photoluminescence signal shows a lasing behavior with bosonic condensation characteristics, accompanied by long-range phase coherence. The excitation density required for the lasing behavior, however, is found to exceed the Mott density, excluding the exciton as the excited state. These results demonstrate that the polaritonic Bardeen-Cooper-Schrieffer state originates the strong coupling formation and the lasing behavior.

2.
Opt Express ; 29(17): 26433-26443, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615078

RESUMO

Organic semiconductors are promising candidates as platforms for room temperature polaritonic devices. An issue for practical implementation of organic polariton devices is the lowering of condensation threshold. Here we investigate anisotropic light-matter coupling characteristics in an organic crystal microcavity showing strong molecular orientation. Furthermore, the below-threshold excitation dynamics are investigated to clarify the spontaneous transition pathways from reservoir to polariton states. Time-resolved photoluminescence measurements reveal that photonic/excitonic hybrid transition processes coexist in the microcavity system. This finding provides valuable insights into a detailed understanding of polariton dynamics and help in the design of polaritonic devices showing a low-threshold condensed phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...