Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 59(2): 576-584, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35064267

RESUMO

Anopheles gambiae sensu lato complex (An. gambiae s.l.) describes a group of nine morphologically indistinguishable members that vary in their distribution, ability to transmit malaria, and susceptibility to pyrethroids. Here, we recorded the spatial patterns of PCR-identified An. gambiae s.l. complex species collected from four sites in Cross River State, Nigeria that represented three different ecological zones. Trapping was conducted between October 2015 and June 2016. Anopheles gambiae s.l. complex species identification was performed using species-specific primers followed by An. gambiae and An. coluzzii differentiation using the restriction fragment length polymorphism (RFLP) method. Bivariate and multivariate logistic regression models were used to identify ecological and seasonal variables closely associated with An. coluzzii and An. gambiae distribution. Out of 1,388 An. gambiae s.l. successfully amplified, 1,074 (77.4%) were An. coluzzii, 278 (20%) were An. gambiae, and 25 (1.8%) were hybrids (An. coluzzii/An. gambiae). A very small number of An. arabiensis (0.8%, n = 11) were also collected. Statistical analysis indicated that An. coluzzii is predominant in Guinea-savannah and tropical rainforest, and is highly associated with rainy seasons, while, An. gambiae is prevalent in mangrove swamp forest during dry seasons. Only 13 An. gambiae s.l. females were infected with Plasmodium falciparum (P. falciparum). The sporozoite infection rate was higher in mangrove swamp forest (53.8%, n = 7) than in rain forest (38.5%, n = 5) followed by Guinea-savannah (7.7%, n = 1) ecological zones. These results provide important insights for strategic planning of malaria control programs in Nigeria.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Feminino , Mosquitos Vetores , Nigéria , Plasmodium falciparum , Reação em Cadeia da Polimerase
2.
Parasite Epidemiol Control ; 15: e00225, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34646952

RESUMO

Arbovirus transmission by Aedes mosquitoes has long been a significant problem in Africa. In West Africa, Aedes vector management faces significant challenges; lack of recent Aedes distributional data and potential distributional modeling hinder effective vector control and pose serious public health issues. In this study, larval and adult mosquitoes were collected from four study sites in Enugu State, Nigeria every other month between November 2017 and September 2018. A total number of 2997 Aedes mosquitoes were collected and identified, and 59 positive field occurrence points for both Aedes adult and larvae were recorded. A total of 18 positive occurrence points were used for modeling. Ecological Niche Models (ENMs) were used to estimate the current geographic distribution of Aedes species (spp.) in Enugu State, south-east Nigeria, and mosquito presence was used as a proxy for predicting risk of disease transmission. Maximum Entropy distribution modeling or "MaxEnt" was used for predicting the potential suitable habitats, using a portion of the occurrence records. A total of 23 environmental variables (19 bioclimatic and four topographic) were used to model the potential geographical distribution area under current climatic conditions. The most suitable habitat for Aedes spp. was predicted in the northern, central, and southeastern parts of Enugu State with some extensions in Anambra, Delta, and Edo States in the west, and Ebonyi State in the east. Seasonal temperature, precipitation of the wettest month, mean monthly temperature range, elevation, and precipitation of the driest months were the highest estimated main variable contributions associated with the distribution of Aedes spp. We found that Aedes spp. prefer to be situated in environmental conditions where precipitation of wettest month ranged from 265 to 330 mm, precipitation of driest quarter ranged from 25 to 75 mm while precipitation of wettest quarter ranged from 650 to 950 mm. Aedes mosquitoes, such as Ae. aegypti and Ae. albopictus, pose a significant threat to human health, hence, the results of this study will help decision makers to monitor the distribution of these species and establish a management plan for future national mosquito surveillance and control programs in Nigeria.

3.
J Med Entomol ; 52(3): 475-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26334824

RESUMO

Members of the Anopheles gambiae sensu lato (Giles) complex define a group of seven morphologically indistinguishable species, including the principal malaria vectors in Sub-Saharan Africa. Members of this complex differ in behavior and ability to transmit malaria; hence, precise identification of member species is critical to monitoring and evaluating malaria threat levels. We collected mosquitoes from five counties in Liberia every other month from May 2011 until May 2012, using various trapping techniques. A. gambiae complex members were identified using molecular techniques based on differences in the ribosomal DNA (rDNA) region between species and the molecular forms (S and M) of A. gambiae sensu stricto (s.s) specimens. In total, 1,696 A. gambiae mosquitoes were collected and identified. DNA was extracted from legs of each specimen with species identification determined by multiplex polymerase chain reaction using specific primers. The molecular forms (M or S) of A. gambiae s.s were determined by restriction fragment length polymorphism. Bivariate and multivariate logistic regression models identified environmental variables associated with genomic differentiation. Our results indicate widespread occurrence of A. gambiae s.s., the principal malaria vector in the complex, although two Anopheles melas Theobald/A. merus Donitz mosquitoes were detected. We found 72.6, 25.5, and 1.9% of A. gambiae s.s specimens were S, M, and hybrid forms, respectively. Statistical analysis indicates that the S form was more likely to be found in rural areas during rainy seasons and indoor catchments. This information will enhance vector control efforts in Liberia.


Assuntos
Anopheles/fisiologia , Insetos Vetores/fisiologia , Distribuição Animal , Animais , Anopheles/classificação , Anopheles/genética , DNA Intergênico/genética , DNA Intergênico/metabolismo , Humanos , Insetos Vetores/classificação , Libéria , Malária/parasitologia , Malária/transmissão , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Densidade Demográfica , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...