Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 171863, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518817

RESUMO

Paint used to coat surfaces in aquatic environments often contain biocides to prevent biofouling, and as these coatings degrade, antifouling paint particles (APPs) end up in aquatic, and especially marine, sediments. However, it is currently unclear what further influence APPs in the sediment have on biotic communities or processes. This study investigates how a variety of commercially-available APPs effect the marine microbial community by spiking different laboratory-manufactured APPs to sediment. Following exposure for 30 and 60 days, APPs caused a clear and consistent effect on the bacterial community composition as determined by 16S metabarcoding. This effect was strongest between 0 and 30 days, but continues to a lesser extent between 30 and 60 days. APPs appear to inhibit the highly diverse, but in general rarer, fraction of the community and/or select for specific community members to become more dominant. 71 antifouling-presence and 454 antifouling-absence indicator taxa were identified by indicator analysis. The difference in the level of classification in these two indicator groups was highly significant, with the antifouling-presence indicators having much higher percentage sequence identity to cultured taxa, while the antifouling-absence indicators appear to be made up of undescribed taxa, which may indicate that APPs act as a proxy for general anthropogenic influence or that APP contamination selects for taxa capable of being cultured. Given the clear and consistent effect APPs have on the surrounding sediment microbial community, further research into how APPs affect sediment functional processes and how such effects scale with concentration is recommended to better assess the wider consequences of these pollutants for marine biogeochemical cycles in the future. SYNOPSIS: Microplastic-paint particles are commonly found in marine sediment but little is known about how these, especially antifouling, paint particles affect sediment microbial communities. This study demonstrates that antifouling paint particles fundamentally alter sediment microbial communities.


Assuntos
Incrustação Biológica , Microbiota , Poluentes Químicos da Água , Incrustação Biológica/prevenção & controle , Microplásticos , Plásticos , Pintura/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química
2.
Chem Commun (Camb) ; 53(2): 372-375, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27935617

RESUMO

Fenton's reagent was used to isolate microplastics from organic-rich wastewater. The catalytic reaction did not affect microplastic chemistry or size, enabling its use as a pre-treatment method for focal plane array-based micro-FT-IR imaging. Compared with previously described microplastic treatment methods, Fenton's reagent offers a considerable reduction in sample preparation times.


Assuntos
Fracionamento Químico/métodos , Peróxido de Hidrogênio/química , Ferro/química , Plásticos/isolamento & purificação , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Plásticos/química , Fatores de Tempo , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...