Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 9: 2966, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619324

RESUMO

Complications arising from Preterm Birth are the leading causes of neonatal death globally. Current therapeutic strategies to prevent Preterm Birth are yet to demonstrate success in terms of reducing this neonatal disease burden. Upregulation of intracellular inflammatory pathways in uterine cells, including those involving nuclear factor kappa-B (NFκB), have been causally linked to both human term and preterm labor, but the barrier presented by the cell membrane presents an obstacle to interventions aimed at dampening these inflammatory responses. Cell penetrating peptides (CPPs) are novel vectors that can traverse cell membranes without the need for recognition by cell surface receptors and offer the ability to deliver therapeutic cargo internal to cell membranes. Using a human uterine cell culture inflammatory model, this study aimed to test the effectiveness of CPP-cargo delivery to inhibit inflammatory responses, comparing this effect with a small molecule inhibitor (Sc514) that has a similar intracellular target of action within the NFκB pathway (the IKK complex). The CPP Penetratin, conjugated to rhodamine, was able to enter uterine cells within a 60 min timeframe as assessed by live confocal microscopy, this phenomena was not observed with the use of a rhodamine-conjugated inert control peptide (GC(GS)4). Penetratin CPP conjugated to an IKK-inhibitory peptide (Pen-NBD) demonstrated ability to inhibit both the IL1ß-induced expression of the inflammatory protein COX2 and dampen the expression of a bespoke array of inflammatory genes. Truncation of the CPP vector rendered the CPP-cargo conjugate much less effective, demonstrating the importance of careful vector selection. The small molecule inhibitor Sc514 also demonstrated ability to inhibit COX2 protein responses and a broad down-regulatory effect on uterine cell inflammatory gene expression. These results support the further exploration of either CPP-based or small molecular treatment strategies to dampen gestational cell inflammatory responses in the context of preterm birth. The work underlines both the importance of careful selection of CPP vector-cargo combinations and basic testing over a broad time and concentration range to ensure effective responses. Further work should demonstrate the effectiveness of CPP-linked cargos to dampen alternative pathways of inflammation linked to Preterm Birth such as MAP Kinase or AP1.


Assuntos
Portadores de Fármacos/química , Miométrio/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Nascimento Prematuro/prevenção & controle , Tiofenos/administração & dosagem , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Peptídeos Penetradores de Células/química , Células Cultivadas , Feminino , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Miométrio/citologia , Miométrio/imunologia , NF-kappa B/imunologia , NF-kappa B/metabolismo , Gravidez , Nascimento Prematuro/imunologia , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Regulação para Cima
2.
Methods Mol Biol ; 1788: 1-9, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28975594

RESUMO

Muscle tissue poses a particular challenge to proteomic analysis due to a very wide range of protein abundances arising from the dominant expression of myofilament-related proteins. We address this issue by describing proteomic analysis with liquid chromatography-mass spectrometry (LC-MS) and sequential window acquisition of all theoretical mass spectra (SWATH), of guinea pig cardiac tissue prepared in two homogenization buffers: (1) An SDS-based buffer designed to extract "all" tissue proteins and (2) a long-established EDTA-containing buffer thought to preferentially extract non-myofibril-related proteins. We use gene ontology (GO) annotation-based assessment of subcellular localization to indicate if these enriched proteins congregate in the cytoplasm or in organellar lumens. This technique results in the preferential quantitation of less abundant non-myofibrillar proteins and, for future studies, offers the opportunity for more complete analyses of changes in heart tissue protein expression with biological circumstance.


Assuntos
Proteínas dos Microfilamentos/isolamento & purificação , Miocárdio/química , Miofibrilas/química , Proteômica/métodos , Animais , Soluções Tampão , Cromatografia Líquida/métodos , Ácido Edético/química , Cobaias , Proteínas dos Microfilamentos/análise , Proteínas Musculares/análise , Proteínas Musculares/isolamento & purificação , Dodecilsulfato de Sódio/química , Software , Espectrometria de Massas em Tandem/métodos , Tripsina/química
3.
PLoS One ; 11(10): e0164352, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27798640

RESUMO

BACKGROUND: Myosin light-chain phosphatase is a trimeric protein that hydrolyses phosphorylated myosin II light chains (MYLII) to cause relaxation in smooth muscle cells including those of the uterus. A major component of the phosphatase is the myosin targeting subunit (MYPT), which directs a catalytic subunit to dephosphorylate MYLII. There are 5 main MYPT family members (MYPT1 (PPP1R12A), MYPT2 (PPP1R12B), MYPT3 (PPP1R16A), myosin binding subunit 85 MBS85 (PPP1R12C) and TIMAP (TGF-beta-inhibited membrane-associated protein (PPP1R16B)). Nitric oxide (NO)-mediated smooth muscle relaxation has in part been attributed to activation of the phosphatase by PKG binding to a leucine zipper (LZ) dimerization domain located at the carboxyl-terminus of PPP1R12A. In animal studies, alternative splicing of PPP1R12A can lead to the inclusion of a 31-nucleotide exonic segment that generates a LZ negative (LZ-) isovariant rendering the phosphatase less sensitive to NO vasodilators and alterations in PPP1R12ALZ- and LZ+ expression have been linked to phenotypic changes in smooth muscle function. Moreover, PPP1R12B and PPP1R12C, but not PPP1R16A or PPP1R16B, have the potential for LZ+/LZ- alternative splicing. Yet, by comparison to animal studies, the information on human MYPT genomic sequences/mRNA expressions is scant. As uterine smooth muscle undergoes substantial remodeling during pregnancy we were interested in establishing the patterns of expression of human MYPT isovariants during this process and also following labor onset as this could have important implications for determining successful pregnancy outcome. OBJECTIVES: We used cross-species genome alignment, to infer putative human sequences not available in the public domain, and isovariant-specific quantitative PCR, to analyse the expression of mRNA encoding putative LZ+ and LZ- forms of PPP1R12A, PPP1R12B and PPP1R12C as well as canonical PPP1R16A and PPP1R16B genes in human uterine smooth muscle from non-pregnant, pregnant and in-labor donors. RESULTS: We found a reduction in the expression of PPP1R12A, PPP1R12BLZ+, PPP1R16A and PPP1R16B mRNA in late pregnancy (not-in-labor) relative to non-pregnancy. PPP1R12ALZ+ and PPP1R12ALZ- mRNA levels were similar in the non-pregnant and pregnant not in labor groups. There was a further reduction in the uterine expression of PPP1R12ALZ+, PPP1R12CLZ+ and PPP1R12ALZ- mRNA with labor relative to the pregnant not-in-labor group. PPP1R12A, PPP1R12BLZ+, PPP1R16A and PPP1R16B mRNA levels were invariant between the not in labor and in-labor groups. CONCLUSIONS: MYPT proteins are crucial determinants of smooth muscle function. Therefore, these alterations in human uterine smooth muscle MYPT isovariant expression during pregnancy and labor may be part of the important molecular physiological transition between uterine quiescence and activation.


Assuntos
Regulação da Expressão Gênica , Trabalho de Parto , Músculo Liso/metabolismo , Miométrio/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Adulto , Sequência de Bases , Biomarcadores , Biologia Computacional/métodos , Éxons , Feminino , Humanos , Isoenzimas , Gravidez , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...