Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38834903

RESUMO

PURPOSE: This work presents a novel platform for stereo reconstruction in anterior segment ophthalmic surgery to enable enhanced scene understanding, especially depth perception, for advanced computer-assisted eye surgery by effectively addressing the lack of texture and corneal distortions artifacts in the surgical scene. METHODS: The proposed platform for stereo reconstruction uses a two-step approach: generating a sparse 3D point cloud from microscopic images, deriving a dense 3D representation by fitting surfaces onto the point cloud, and considering geometrical priors of the eye anatomy. We incorporate a pre-processing step to rectify distortion artifacts induced by the cornea's high refractive power, achieved by aligning a 3D phenotypical cornea geometry model to the images and computing a distortion map using ray tracing. RESULTS: The accuracy of 3D reconstruction is evaluated on stereo microscopic images of ex vivo porcine eyes, rigid phantom eyes, and synthetic photo-realistic images. The results demonstrate the potential of the proposed platform to enhance scene understanding via an accurate 3D representation of the eye and enable the estimation of instrument to layer distances in porcine eyes with a mean average error of 190  µ m , comparable to the scale of surgeons' hand tremor. CONCLUSION: This work marks a significant advancement in stereo reconstruction for ophthalmic surgery by addressing corneal distortions, a previously often overlooked aspect in such surgical scenarios. This could improve surgical outcomes by allowing for intra-operative computer assistance, e.g., in the form of virtual distance sensors.

2.
Med Phys ; 51(3): 2044-2056, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37708456

RESUMO

BACKGROUND: Ultrasound (US) has demonstrated to be an effective guidance technique for lumbar spine injections, enabling precise needle placement without exposing the surgeon or the patient to ionizing radiation. However, noise and acoustic shadowing artifacts make US data interpretation challenging. To mitigate these problems, many authors suggested using computed tomography (CT)-to-US registration to align the spine in pre-operative CT to intra-operative US data, thus providing localization of spinal landmarks. PURPOSE: In this paper, we propose a deep learning (DL) pipeline for CT-to-US registration and address the problem of a need for annotated medical data for network training. Firstly, we design a data generation method to generate paired CT-US data where the spine is deformed in a physically consistent manner. Secondly, we train a point cloud (PC) registration network using anatomy-aware losses to enforce anatomically consistent predictions. METHODS: Our proposed pipeline relies on training the network on realistic generated data. In our data generation method, we model the properties of the joints and disks between vertebrae based on biomechanical measurements in previous studies. We simulate the supine and prone position deformation by applying forces on the spine models. We choose the spine models from 35 patients in VerSe dataset. Each spine is deformed 10 times to create a noise-free data with ground-truth segmentation at hand. In our experiments, we use one-leave-out cross-validation strategy to measure the performance and the stability of the proposed method. For each experiment, we choose generated PCs from three spines as the test set. From the remaining, data from 3 spines act as the validation set and we use the rest of the data for training the algorithm. To train our network, we introduce anatomy-aware losses and constraints on the movement to match the physics of the spine, namely, rigidity loss and bio-mechanical loss. We define rigidity loss based on the fact that each vertebra can only transform rigidly while the disks and the surrounding tissue are deformable. Second, by using bio-mechanical loss we stop the network from inferring extreme movements by penalizing the force needed to get to a certain pose. RESULTS: To validate the effectiveness of our fully automated data generation pipeline, we qualitatively assess the fidelity of the generated data. This assessment involves verifying the realism of the spinal deformation and subsequently confirming the plausibility of the simulated ultrasound images. Next, we demonstrate that the introduction of the anatomy-aware losses brings us closer to state-of-the-art (SOTA) and yields a reduction of 0.25 mm in terms of target registration error (TRE) compared to using only mean squared error (MSE) loss on the generated dataset. Furthermore, by using the proposed losses, the rigidity loss in inference decreases which shows that the inferred deformation respects the rigidity of the vertebrae and only introduces deformations in the soft tissue area to compensate the difference to the target PC. We also show that our results are close to the SOTA for the simulated US dataset with TRE of 3.89 mm and 3.63 mm for the proposed method and SOTA respectively. In addition, we show that our method is more robust against errors in the initialization in comparison to SOTA and significantly achieves better results (TRE of 4.88 mm compared to 5.66 mm) in this experiment. CONCLUSIONS: In conclusion, we present a pipeline for spine CT-to-US registration and explore the potential benefits of utilizing anatomy-aware losses to enhance registration results. Additionally, we propose a fully automatic method to synthesize paired CT-US data with physically consistent deformations, which offers the opportunity to generate extensive datasets for network training. The generated dataset and the source code for data generation and registration pipeline can be accessed via https://github.com/mfazampour/medphys_ct_us_registration.


Assuntos
Coluna Vertebral , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Coluna Vertebral/diagnóstico por imagem , Algoritmos , Vértebras Lombares , Software , Radiação Ionizante , Processamento de Imagem Assistida por Computador/métodos
3.
Int J Comput Assist Radiol Surg ; 18(7): 1295-1302, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37259011

RESUMO

PURPOSE: A computer-assisted surgical system must provide up-to-date and accurate information of the patient's anatomy during the procedure to improve clinical outcome. It is therefore essential to consider the tissue deformations, and a patient-specific biomechanical model (PBM) is usually adopted. The predictive capability of the PBM is highly influenced by proper definition of attachments to the surrounding anatomy, which are difficult to estimate preoperatively. METHODS: We propose to predict the location of attachments using a deep neural network fed with multiple partial views of the intraoperative deformed organ surface directly encoded as point clouds. Compared to previous works, providing a sequence of deformed views as input allows the network to consider the temporal evolution of deformations and to handle the intrinsic ambiguity of estimating attachments from a single view. RESULTS: The method is applied to computer-assisted hepatic surgery and tested on both a synthetic and in vivo human open-surgery scenario. The network is trained on a patient-specific synthetic dataset in less than 5 h and produces a more accurate intraoperative estimation of attachments than applying the ones generally used in liver surgery (i.e., fixing vena cava or falciform ligament). The obtained results show 26% more accurate predictions than other solution previously proposed. CONCLUSIONS: Trained with patient-specific simulated data, the proposed network estimates the attachments in a fast and accurate manner also considering the temporal evolution of the deformations, improving patient-specific intraoperative guidance in computer-assisted surgical systems.


Assuntos
Hepatopatias , Cirurgia Assistida por Computador , Humanos , Redes Neurais de Computação , Cirurgia Assistida por Computador/métodos
4.
Int J Comput Assist Radiol Surg ; 15(8): 1379-1387, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32445126

RESUMO

PURPOSE: Biomechanical simulation of anatomical deformations caused by ultrasound probe pressure is of outstanding importance for several applications, from the testing of robotic acquisition systems to multi-modal image fusion and development of ultrasound training platforms. Different approaches can be exploited for modelling the probe-tissue interaction, each achieving different trade-offs among accuracy, computation time and stability. METHODS: We assess the performances of different strategies based on the finite element method for modelling the interaction between the rigid probe and soft tissues. Probe-tissue contact is modelled using (i) penalty forces, (ii) constraint forces, and (iii) by prescribing the displacement of the mesh surface nodes. These methods are tested in the challenging context of ultrasound scanning of the breast, an organ undergoing large nonlinear deformations during the procedure. RESULTS: The obtained results are evaluated against those of a non-physically based method. While all methods achieve similar accuracy, performance in terms of stability and speed shows high variability, especially for those methods modelling the contacts explicitly. Overall, prescribing surface displacements is the approach with best performances, but it requires prior knowledge of the contact area and probe trajectory. CONCLUSIONS: In this work, we present different strategies for modelling probe-tissue interaction, each able to achieve different compromises among accuracy, speed and stability. The choice of the preferred approach highly depends on the requirements of the specific clinical application. Since the presented methodologies can be applied to describe general tool-tissue interactions, this work can be seen as a reference for researchers seeking the most appropriate strategy to model anatomical deformation induced by the interaction with medical tools.


Assuntos
Modelos Anatômicos , Ultrassonografia/métodos , Fenômenos Biomecânicos , Simulação por Computador , Humanos
5.
Int J Comput Assist Radiol Surg ; 14(11): 2043, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31250254

RESUMO

The original version of this article unfortunately contained a mistake.

6.
Int J Comput Assist Radiol Surg ; 14(8): 1329-1339, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31161556

RESUMO

PURPOSE: Although ultrasound (US) images represent the most popular modality for guiding breast biopsy, malignant regions are often missed by sonography, thus preventing accurate lesion localization which is essential for a successful procedure. Biomechanical models can support the localization of suspicious areas identified on a preoperative image during US scanning since they are able to account for anatomical deformations resulting from US probe pressure. We propose a deformation model which relies on position-based dynamics (PBD) approach to predict the displacement of internal targets induced by probe interaction during US acquisition. METHODS: The PBD implementation available in NVIDIA FleX is exploited to create an anatomical model capable of deforming online. Simulation parameters are initialized on a calibration phantom under different levels of probe-induced deformations; then, they are fine-tuned by minimizing the localization error of a US-visible landmark of a realistic breast phantom. The updated model is used to estimate the displacement of other internal lesions due to probe-tissue interaction. RESULTS: The localization error obtained when applying the PBD model remains below 11 mm for all the tumors even for input displacements in the order of 30 mm. This proposed method obtains results aligned with FE models with faster computational performance, suitable for real-time applications. In addition, it outperforms rigid model used to track lesion position in US-guided breast biopsies, at least halving the localization error for all the displacement ranges considered. CONCLUSION: Position-based dynamics approach has proved to be successful in modeling breast tissue deformations during US acquisition. Its stability, accuracy and real-time performance make such model suitable for tracking lesions displacement during US-guided breast biopsy.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Biópsia Guiada por Imagem , Imageamento Tridimensional , Ultrassonografia Mamária , Algoritmos , Biópsia , Calibragem , Simulação por Computador , Humanos , Modelos Anatômicos , Posicionamento do Paciente , Imagens de Fantasmas , Robótica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...