Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 271: 127-138, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29288681

RESUMO

Resistance to anti-tumor therapeutics is an important clinical problem. Tumor-targeted therapies currently used in the clinic are derived from antibodies or small molecules that mitigate growth factor activity. These have improved therapeutic efficacy and safety compared to traditional treatment modalities but resistance arises in the majority of clinical cases. Targeting such resistance could improve tumor abatement and patient survival. A growing number of such tumors are characterized by prominent expression of the human epidermal growth factor receptor 3 (HER3) on the cell surface. This study presents a "Trojan-Horse" approach to combating these tumors by using a receptor-targeted biocarrier that exploits the HER3 cell surface protein as a portal to sneak therapeutics into tumor cells by mimicking an essential ligand. The biocarrier used here combines several functions within a single fusion protein for mediating targeted cell penetration and non-covalent self-assembly with therapeutic cargo, forming HER3-homing nanobiologics. Importantly, we demonstrate here that these nanobiologics are therapeutically effective in several scenarios of resistance to clinically approved targeted inhibitors of the human EGF receptor family. We also show that such inhibitors heighten efficacy of our nanobiologics on naïve tumors by augmenting HER3 expression. This approach takes advantage of a current clinical problem (i.e. resistance to growth factor inhibition) and uses it to make tumors more susceptible to HER3 nanobiologic treatment. Moreover, we demonstrate a novel approach in addressing drug resistance by taking inhibitors against which resistance arises and re-introducing these as adjuvants, sensitizing tumors to the HER3 nanobiologics described here.


Assuntos
Antineoplásicos/administração & dosagem , Produtos Biológicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Peptídeos/administração & dosagem , Receptor ErbB-3/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos , Neoplasias/tratamento farmacológico
2.
J Control Release ; 217: 92-101, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26334483

RESUMO

Water-soluble corroles with inherent fluorescence can form stable self-assemblies with tumor-targeted cell penetration proteins, and have been explored as agents for optical imaging and photosensitization of tumors in pre-clinical studies. However, the limited tissue-depth of excitation wavelengths limits their clinical applicability. To examine their utility in more clinically-relevant imaging and therapeutic modalities, here we have explored the use of corroles as contrast enhancing agents for magnetic resonance imaging (MRI), and evaluated their potential for tumor-selective delivery when encapsulated by a tumor-targeted polypeptide. We have found that a manganese-metallated corrole exhibits significant T1 relaxation shortening and MRI contrast enhancement that is blocked by particle formation in solution but yields considerable MRI contrast after tissue uptake. Cell entry but not low pH enables this. Additionally, the corrole elicited tumor-toxicity through the loss of mitochondrial membrane potential and cytoskeletal breakdown when delivered by the targeted polypeptide. The protein-corrole particle (which we call HerMn) exhibited improved therapeutic efficacy compared to current targeted therapies used in the clinic. Taken together with its tumor-preferential biodistribution, our findings indicate that HerMn can facilitate tumor-targeted toxicity after systemic delivery and tumor-selective MR imaging activatable by internalization.


Assuntos
Antineoplásicos , Meios de Contraste , Manganês , Neuregulina-1 , Porfirinas , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Meios de Contraste/uso terapêutico , Feminino , Humanos , Imageamento por Ressonância Magnética , Manganês/farmacocinética , Manganês/farmacologia , Manganês/uso terapêutico , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Neuregulina-1/farmacocinética , Neuregulina-1/farmacologia , Neuregulina-1/uso terapêutico , Porfirinas/farmacocinética , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Distribuição Tecidual , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...