Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 10: 970694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726636

RESUMO

Qatar is a peninsular country with predominantly hot and humid weather, with 88% of the total population being immigrants. As such, it leaves the country liable to the introduction and dissemination of vector-borne diseases, in part due to the presence of native arthropod vectors. Qatar's weather is expected to become warmer with the changing climatic conditions across the globe. Environmental factors such as humidity and temperature contribute to the breeding and distribution of different types of mosquito species in a given region. If proper and timely precautions are not taken, a high rate of particular mosquito species can result in the transmission of various vector-borne diseases. In this study, we analyzed the environmental impact on the probability of occurrence of different mosquito species collected from several different sites in Qatar. The Naive Bayes model was used to calculate the posterior probability for various mosquito species. Further, the resulting Naive Bayes predictions were used to define the favorable environmental circumstances for identified mosquito species. The findings of this study will help in the planning and implementation of an active surveillance system and preventive measures to curb the spread of mosquitoes in Qatar.


Assuntos
Culicidae , Doenças Transmitidas por Vetores , Animais , Mosquitos Vetores , Teorema de Bayes , Catar , Tempo (Meteorologia)
2.
Polymers (Basel) ; 13(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34771349

RESUMO

The environmental impacts of the polypropylene (PP) manufacturing process are not fully understood in the Gulf Cooperation Council (GCC) region. There is a growing interest in assessing the environmental impacts of this highly demanded product, especially for the petrochemical industry sector. This research examines the environmental impacts of the polypropylene manufacturing process using a life cycle assessment (LCA) approach. Gabi software is selected to carry out this research study and quantify the risks associated with manufacturing one ton of polypropylene, chosen as the functional unit for this LCA study. This work has the following merits: (i) an evaluation of environmental impacts specific to GCC region based on actual plant data; (ii) the results in this work can be used to evaluate LCA impacts of PP based products; and (iii) emphasizing the importance of waste management in reducing environmental impacts. This study shows that the polypropylene manufacturing process releases numerous pollutants into the environment, as the gross CO2 emissions for the manufacturing process of PP in the plant located in the GCC region were estimated to be 1.58 kg CO2 eq./kg-PP. The manufacturing process of propylene has extremely high impacts on global warming potential, fossil resource depletion (1.722 kg Oil eq./kg-PP), human toxicity (0.077 kg 1,4-DB eq./kg-PP), acidification (0.0049 kg SO2 eq./kg-PP), and petrochemical oxidant formation (0.0042 kg NMVOC/kg-PP). Additionally, based on the results of this present research, this study proposes possible improvements and alternative solutions such as applying advanced technologies, clean energy, and safe recycling processes in the GCC that are environmentally friendly.

3.
Polymers (Basel) ; 13(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668272

RESUMO

Metal-alloys tubes are used in the falling-film evaporator of the multi-effect distillation (MED) that is the dominant and efficient thermal seawater desalination process. However, the harsh seawater environment (high salinity and high temperature) causes scale precipitation and corrosion of MED evaporators' metal tubes, presenting a serious technical challenge to the process. Therefore, the metal/metal alloys used as the material of the MED evaporators' tubes are expensive and require high energy and costly tube fabrication process. On the other hand, polymers are low-cost, easy to fabricate into tubes, and highly corrosion-resistant, but have low thermal conductivity. Nevertheless, thermally conductive fillers can enhance the thermal conductivity of polymers. In this article, we carried out a feasibility-study-based techno-economic and socioeconomic analysis, as well as a life-cycle assessment (LCA), of a conventional MED desalination plant that uses titanium tubes and a plant that used thermally enhanced polymer composites (i.e., polyethylene (PE)-expanded graphite (EG) composite) as the tubes' material. Two different polymer composites containing 30% and 40% filler (expanded graphite/graphene) are considered. Our results indicate that the MED plant based on polymer composite tubes has favored economic and carbon emission metrics with the potential to reduce the cost of the MED evaporator (shell and tubes) by 40% below the cost of the titanium evaporator. Moreover, the equivalent carbon emissions associated with the composite polymer tubes' evaporator is 35% lower than titanium tubes. On the other hand, the ozone depletion, acidification, and fossil fuel depletion for the polymer composite tubes are comparable with that of the titanium tubes. The recycling of thermally enhanced polymers is not considered in this LCA analysis; however, after the end of life, reusing the polymer material into other products would lower the overall environmental impacts. Moreover, the polymer composite tubes can be produced locally, which will not only reduce the environmental impacts due to transportation but also create jobs for local manufacturing.

5.
J Pharm Sci ; 108(1): 372-381, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30009797

RESUMO

The lack of a commercial laboratory, pilot and small manufacturing scale dead end continuous filtration and drying unit it is a significant gap in the development of continuous pharmaceutical manufacturing processes for new active pharmaceutical ingredients (APIs). To move small-scale pharmaceutical isolation forward from traditional batch Nutsche filtration to continuous processing a continuous filter dryer prototype unit (CFD20) was developed in collaboration with Alconbury Weston Ltd. The performance of the prototype was evaluated by comparison with manual best practice exemplified using a modified Biotage VacMaster unit to gather data and process understanding for API filtration and washing. The ultimate objective was to link the chemical and physical attributes of an API slurry with equipment and processing parameters to improve API isolation processes. Filtration performance was characterized by assessing filtrate flow rate by application of Darcy's law, the impact on product crystal size distribution and product purity were investigated using classical analytical methods. The overall performance of the 2 units was similar, showing that the prototype CFD20 can match best manual lab practice for filtration and washing while allowing continuous processing and real-time data logging. This result is encouraging and the data gathered provides further insight to inform the development of CFD20.


Assuntos
Filtração/métodos , Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Indústria Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...