Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 74, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279107

RESUMO

Management of nitrogen (N) fertilizer is a critical factor that can improve maize (Zea mays L.) production. On the other hand, high volatilization losses of N also pollute the air. A field experiment was established using a silt clay soil to examine the effect of sulfur-coated urea and sulfur from gypsum on ammonia (NH3) emission, N use efficiency (NUE), and the productivity of maize crop under alkaline calcareous soil. The experimental design was a randomized complete block (RCBD) with seven treatments in three replicates: control with no N, urea150 alone (150 kg N ha-1), urea200 alone (200 kg N ha-1), urea150 + S (60 kg ha-1 S from gypsum), urea200 + S, SCU150 (sulfur-coated urea) and SCU200. The results showed that the urea150 + S and urea200 + S significantly reduced the total NH3 by (58 and 42%) as compared with the sole application urea200. The NH3 emission reduced further in the treatment with SCU150 and SCU200 by 74 and 65%, respectively, compared to the treatment with urea200. The maize plant biomass, grain yield, and total N uptake enhanced by 5-14%, 4-17%, and 7-13, respectively, in the treatments with urea150 + s and urea200 + S, relative to the treatment with urea200 alone. Biomass, grain yield, and total N uptake further increased significantly by 22-30%, 25-28%, and 26-31%, respectively, in the treatments with SCU150 and SCU200, relative to the treatment with urea200 alone. The applications of SCU150 enhanced the nitrogen use efficiency (NUE) by (72%) and SCU200 by (62%) respectively, compared with the sole application of urea200 alone. In conclusion, applying S-coated urea at a lower rate of 150 kg N ha-1 compared with a higher rate of 200 kg N ha-1 may be an effective way to reduce N fertilizer application rate and mitigate NH3 emission, improve NUE, and increase maize yield. More investigations are suggested under different soil textures and climatic conditions to declare S-coated urea at 150 kg N ha-1 as the best application rate for maize to enhance maize growth and yield.


Assuntos
Amônia , Nitrogênio , Amônia/análise , Nitrogênio/análise , Agricultura/métodos , Zea mays , Volatilização , Fertilizantes/análise , Sulfato de Cálcio , Solo , Ureia , Grão Comestível/química , Enxofre
2.
Sci Rep ; 14(1): 141, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167554

RESUMO

Soil salinity, the second most prominent cause of land degradation after soil erosion, has posed a persistent challenge to agriculture. Currently, approximately 1 billion hectares of Earth's land surface, equivalent to 7%, are affected by salinity. While biochar has proven effective in mitigating salinity stress, the specific role of deashed biochar in salinity mitigation has not been thoroughly explored. Therefore, this study was conducted to investigate the impact of four levels of deashed biochar (0%, 0.4%, 0.8%, and 1.2%) on the growth and physiological attributes of Fenugreek under both non-saline conditions (2.54 dS/m EC) and salinity stress conditions (5.46 dS/m EC). The results revealed a notable enhancement in various parameters under salinity stress. Compared to the control, the application of 1.20% deashed biochar led to a significant increase in shoot fresh weight (30.82%), root fresh weight (13.06%), shoot dry weight (17.43%), root dry weight (33.44%), shoot length (23.09%), and root length (52.39%) under salinity stress. Furthermore, improvements in internal CO2 concentration (9.91%), stomatal conductance (15.49%), photosynthetic rate (25.50%), and transpiration rate (10.46%) were observed, validating the efficacy of 1.20% deashed biochar in alleviating salinity stress. The study also demonstrated a significant decrease in the activities of oxidative stress markers such as peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), electrolyte leakage, and malondialdehyde (MDA). Simultaneously, there was an increase in the concentrations of essential nutrients, namely nitrogen (N), phosphorus (P), and potassium (K), in both shoot and root tissues. These findings collectively suggest that deashed biochar, particularly at a concentration of 1.20%, is recommended for achieving enhanced crop production under conditions of salinity stress.


Assuntos
Antioxidantes , Trigonella , Antioxidantes/metabolismo , Trigonella/metabolismo , Estresse Oxidativo , Estresse Salino , Salinidade
3.
Sci Rep ; 11(1): 6606, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758248

RESUMO

High lead (Pb) concentration in soils is becoming a severe threat to human health. It also deteriorates plants, growth, yield and quality of food. Although the use of plant growth-promoting rhizobacteria (PGPR), biochar and compost can be effective environment-friendly amendments for decreasing Pb stress in crop plants, the impacts of their simultaneous co-application has not been well documented. Thus current study was carried, was conducted to investigate the role of rhizobacteria and compost mixed biochar (CB) under Pb stress on selected soil properties and agronomic parameters in mint (Mentha piperita L.) plants. To this end, six treatments were studied: Alcaligenes faecalis, Bacillus amyloliquefaciens, CB, PGPR1 + CB, PGPR2 + CB and control. Results showed that the application A. faecalis + CB significantly decreased soil pH and EC over control. However, OM, nitrogen, phosphorus and potassium concentration were significantly improved in the soil where A. faecalis + CB was applied over control. The A. faecalis + CB treatment significantly improved mint plant root dry weight (58%), leaves dry weight (32%), chlorophyll (37%), and N (46%), P (39%) and K (63%) leave concentration, while also decreasing the leaves Pb uptake by 13.5% when compared to the unamended control. In conclusion, A. faecalis + CB has a greater potential to improve overall soil quality, fertility and mint plant productivity under high Pb soil concentration compared to the sole application of CB and A. faecalis.


Assuntos
Carvão Vegetal/metabolismo , Compostagem/métodos , Chumbo/toxicidade , Mentha/efeitos dos fármacos , Rizosfera , Poluentes do Solo/toxicidade , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/metabolismo , Aminoidrolases/metabolismo , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Frutas/química , Chumbo/metabolismo , Mentha/microbiologia , Poluentes do Solo/metabolismo , Estresse Fisiológico , Verduras/química
4.
Sci Rep ; 10(1): 17111, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033275

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Rep ; 10(1): 12159, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699323

RESUMO

Consumption of heavy metals, especially lead (Pb) contaminated food is a serious threat to human health. Higher Pb uptake by the plant affects the quality, growth and yield of crops. However, inoculation of plant growth-promoting rhizobacteria (PGPR) along with a mixture of organic amendments and biochar could be an effective way to overcome the problem of Pb toxicity. That's why current pot experiment was conducted to investigate the effect of compost mixed biochar (CB) and ACC deaminase producing PGPR on growth and yield of spinach plants under artificially induced Pb toxicity. Six different treatments i.e., control, Alcaligenes faecalis (PGPR1), Bacillus amyloliquefaciens (PGPR2), compost + biochar (CB), PGPR1 + CB and PGPR2 + CB were applied under 250 mg Pb kg-1 soil. Results showed that inoculation of PGPRs (Alcaligenes faecalis and Bacillus amyloliquefaciens) alone and along with CB significantly enhanced root fresh (47%) and dry weight (31%), potassium concentration (11%) in the spinach plant. Whereas, CB + Bacillus amyloliquefaciens significantly decreased (43%) the concentration of Pb in the spinach root over control. In conclusion, CB + Bacillus amyloliquefaciens has the potential to mitigate the Pb induced toxicity in the spinach. The obtained result can be further used in the planning and execution of rhizobacteria and compost mixed biochar-based soil amendment.


Assuntos
Carvão Vegetal/química , Chumbo/toxicidade , Poluentes do Solo/toxicidade , Spinacia oleracea/efeitos dos fármacos , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/isolamento & purificação , Alcaligenes faecalis/metabolismo , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/isolamento & purificação , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/metabolismo , Clorofila/metabolismo , Concentração de Íons de Hidrogênio , Chumbo/química , Chumbo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Potássio/análise , Solo/química , Microbiologia do Solo , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Spinacia oleracea/química , Spinacia oleracea/microbiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...