Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 14(5): 3191-3197, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449533

RESUMO

We provide experimental evidence that is inconsistent with often proposed Langmuir-Hinshelwood (LH) mechanistic hypotheses for water-promoted CO oxidation over Au-Fe2O3. Passing CO and H2O, but no O2, over Au-γ-Fe2O3 at 25 °C, we observe significant CO2 production, inconsistent with LH mechanistic hypotheses. Experiments with H218O further show that previous LH mechanistic proposals cannot account for water-promoted CO oxidation over Au-γ-Fe2O3. Guided by density functional theory, we instead postulate a water-promoted Mars-van Krevelen (w-MvK) reaction. Our proposed w-MvK mechanism is consistent both with observed CO2 production in the absence of O2 and with CO oxidation in the presence of H218O and 16O2. In contrast, for Au-TiO2, our data is consistent with previous LH mechanistic hypotheses.

2.
J Mater Chem A Mater ; 12(4): 2465-2478, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38269086

RESUMO

The rising demand for high-performance lithium-ion batteries, pivotal to electric transportation, hinges on key materials like the Ni-rich layered oxide LiNixCoyAlzO2 (NCA) used in cathodes. The present study investigates the redox mechanisms, with particular focus on the role of oxygen in commercial NCA electrodes, both fresh and aged under various conditions (aged cells have performed >900 cycles until a cathode capacity retention of ∼80%). Our findings reveal that oxygen participates in charge compensation during NCA delithiation, both through changes in transition metal (TM)-O bond hybridization and formation of partially reversible O2, the latter occurs already below 3.8 V vs. Li/Li+. Aged NCA material undergoes more significant changes in TM-O bond hybridization when cycling above 50% SoC, while reversible O2 formation is maintained. Nickel is found to be redox active throughout the entire delithiation and shows a more classical oxidation state change during cycling with smaller changes in the Ni-O hybridization. By contrast, Co redox activity relies on a stronger change in Co-O hybridization, with only smaller Co oxidation state changes. The Ni-O bond displays an almost twice as large change in its bond length on cycling as the Co-O bond. The Ni-O6 octahedra are similar in size to the Co-O6 octahedra in the delithiated state, but are larger in the lithiated state, a size difference that increases with battery ageing. These contrasting redox activities are reflected directly in structural changes. The NCA material exhibits the formation of nanopores upon ageing, and a possible connection to oxygen redox activity is discussed. The difference in interaction of Ni and Co with oxygen provides a key understanding of the mechanism and the electrochemical instability of Ni-rich layered transition metal oxide electrodes. Our research specifically highlights the significance of the role of oxygen in the electrochemical performance of electric-vehicle-grade NCA electrodes, offering important insights for the creation of next-generation long-lived lithium-ion batteries.

3.
Inorg Chem ; 63(5): 2388-2400, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242537

RESUMO

When electrocatalysts are prepared, modification of the morphology is a common strategy to enhance their electrocatalytic performance. In this work, we have examined and characterized nanorods (3D) and nanosheets (2D) of nickel molybdate hydrates, which previously have been treated as the same material with just a variation in morphology. We thoroughly investigated the materials and report that they contain fundamentally different compounds with different crystal structures, chemical compositions, and chemical stabilities. The 3D nanorod structure exhibits the chemical formula NiMoO4·0.6H2O and crystallizes in a triclinic system, whereas the 2D nanosheet structures can be rationalized with Ni3MoO5-0.5x(OH)x·(2.3 - 0.5x)H2O, with a mixed valence of both Ni and Mo, which enables a layered crystal structure. The difference in structure and composition is supported by X-ray photoelectron spectroscopy, ion beam analysis, thermogravimetric analysis, X-ray diffraction, electron diffraction, infrared spectroscopy, Raman spectroscopy, and magnetic measurements. The previously proposed crystal structure for the nickel molybdate hydrate nanorods from the literature needs to be reconsidered and is here refined by ab initio molecular dynamics on a quantum mechanical level using density functional theory calculations to reproduce the experimental findings. Because the material is frequently studied as an electrocatalyst or catalyst precursor and both structures can appear in the same synthesis, a clear distinction between the two compounds is necessary to assess the underlying structure-to-function relationship and targeted electrocatalytic properties.

4.
Ultramicroscopy ; 257: 113891, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38043363

RESUMO

Electron magnetic circular dichroism (EMCD) is a powerful technique for estimating element-specific magnetic moments of materials on nanoscale with the potential to reach atomic resolution in transmission electron microscopes. However, the fundamentally weak EMCD signal strength complicates quantification of magnetic moments, as this requires very high precision, especially in the denominator of the sum rules. Here, we employ a statistical resampling technique known as bootstrapping to an experimental EMCD dataset to produce an empirical estimate of the noise-dependent error distribution resulting from application of EMCD sum rules to bcc iron in a 3-beam orientation. We observe clear experimental evidence that noisy EMCD signals preferentially bias the estimation of magnetic moments, further supporting this with error distributions produced by Monte-Carlo simulations. Finally, we propose guidelines for the recognition and minimization of this bias in the estimation of magnetic moments.

5.
Sci Rep ; 13(1): 14730, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679445

RESUMO

Celulose nanofibers are lightweight, recycable, biodegradable, and renewable. Hence, there is a great interest of using them instead of fossil-based components in new materials and biocomposites. In this study, we disclose an environmentally benign (green) one-step reaction approach to fabricate lactic acid ester functionalized cellulose nanofibrils from wood-derived pulp fibers in high yields. This was accomplished by converting wood-derived pulp fibers to nanofibrillated "cellulose lactate" under mild conditions using lactic acid as both the reaction media and catalyst. Thus, in parallel to the cellulose nanofibril production, concurrent lactic acid-catalyzed esterification of lactic acid to the cellulose nanofibers surface occured. The direct lactic acid esterification, which is a surface selective functionalization and reversible (de-attaching the ester groups by cleavage of the ester bonds), of the cellulose nanofibrils was confirmed by low numbers of degree of substitution, and FT-IR analyses. Thus, autocatalytic esterification and cellulose hydrolysis occurred without the need of metal based or a harsh mineral acid catalysts, which has disadvantages such as acid corrosiveness and high recovery cost of acid. Moreover, adding a mineral acid as a co-catalyst significantly decreased the yield of the nanocellulose. The lactic acid media is successfully recycled in multiple reaction cycles producing the corresponding nanocellulose fibers in high yields. The disclosed green cellulose nanofibril production route is industrial relevant and gives direct access to nanocellulose for use in variety of applications such as sustainable filaments, composites, packaging and strengthening of recycled fibers.

6.
Adv Mater ; 35(47): e2306826, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769145

RESUMO

Li-containing alloys and metallic deposits offer substantial Li+ storage capacities as alternative anodes to commercial graphite. However, the thermodynamically in sequence, yet kinetically competitive mechanism between Li solubility in the solid solution and intermediate alloy-induced Li deposition remains debated, particularly across the multiple scales. The elucidation of the mechanism is rather challenging due to the dynamic alloy evolution upon the non-equilibrium, transient lithiation processes under coupled physical fields. Here, influential factors governing Li solubility in the Li-Zn alloy are comprehensively investigated as a demonstrative model, spanning from the bulk electrolyte solution to the ion diffusion within the electrode. Through real-time phase tracking and spatial distribution analysis of intermediate alloy/Li metallic species at varied temperatures, current densities and particle sizes, the driving force of Li solubility and metallic plating along the Li migration pathway are probed in-depth. This study investigates the correlation between kinetics (pronounced concentration polarization, miscibility gap in lattice grains) and rate-limiting interfacial charge transfer thermodynamics in dedicating the Li diffusion into the solid solution. Additionally, the lithiophilic alloy sites with the balanced diffusion barrier and Li adsorption energy are explored to favor the homogeneous metal plating, which provides new insights for the rational innovation of high-capacity alloy/metallic anodes.

7.
ACS Catal ; 13(15): 10418-10424, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37560186

RESUMO

Herein, we describe efficient nanogold-catalyzed cycloisomerization reactions of alkynoic acids and allenynamides to enol lactones and dihydropyrroles, respectively (the latter via an Alder-ene reaction). The gold nanoparticles were immobilized on thiol-functionalized microcrystalline cellulose and characterized by electron microscopy (HAADF-STEM) and by XPS. The thiol-stabilized gold nanoparticles (Au0) were obtained in the size range 1.5-6 nm at the cellulose surface. The robust and sustainable cellulose-supported gold nanocatalyst can be recycled for multiple cycles without losing activity.

8.
Ultramicroscopy ; 251: 113760, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37285614

RESUMO

The need to acquire multiple angle-resolved electron energy loss spectra (EELS) is one of the several critical challenges associated with electron magnetic circular dichroism (EMCD) experiments. If the experiments are performed by scanning a nanometer to atomic-sized electron probe on a specific region of a sample, the precision of the local magnetic information extracted from such data highly depends on the accuracy of the spatial registration between multiple scans. For an EMCD experiment in a 3-beam orientation, this means that the same specimen area must be scanned four times while keeping all the experimental conditions same. This is a non-trivial task as there is a high chance of morphological and chemical modification as well as non-systematic local orientation variations of the crystal between the different scans due to beam damage, contamination and spatial drift. In this work, we employ a custom-made quadruple aperture to acquire the four EELS spectra needed for the EMCD analysis in a single electron beam scan, thus removing the above-mentioned complexities. We demonstrate a quantitative EMCD result for a beam convergence angle corresponding to sub-nm probe size and compare the EMCD results for different detector geometries.

9.
Chemistry ; 29(24): e202203950, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36719323

RESUMO

A highly efficient regio- and stereoselective heterogeneous palladium-catalyzed hydroboration reaction of enallenes was developed. Nanopalladium immobilized on microcrystalline cellulose (MCC) was successfully employed as an efficient catalyst for the enallene hydroboration reaction. The nanopalladium particles were shown by HAADF-STEM to have an average size of 2.4 nm. The cellulose-supported palladium catalyst exhibits high stability and provides vinyl boron products in good to high isolated yields (up to 90 %). The nanopalladium catalyst can be efficiently recycled and it was demonstrated that the catalyst can be used in 7 runs with a maintained high yield (>80 %). The vinylboron compounds prepared from enallenes are important synthetic intermediates that can be used in various organic synthetic transformations.

10.
ACS Appl Mater Interfaces ; 14(11): 13240-13249, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35271266

RESUMO

Ni-rich layered oxides, in a general term of Li(NixCoyMn1-x-y)O2 (x > 0.5), are widely recognized as promising candidates for improving the specific energy and lowering the cost for next-generation Li-ion batteries. However, the high surface reactivity of these materials results in side reactions during improper storage and notable gas release when the cell is charged beyond 4.3 V vs Li+/Li0. Therefore, in this study, we embark on a comprehensive investigation on the moisture sensitivity of LiNi0.85Co0.1Mn0.05O2 by aging it in a controlled environment at a constant room-temperature relative humidity of 63% up to 1 year. We quantitatively analyze the gassing of the aged samples by online electrochemical mass spectrometry and further depict plausible reaction pathways, accounting for the origin of the gas release. Transmission electron microscopy reveals formation of an amorphous surface impurity layer of ca. 10 nm in thickness, as a result of continuous reactions with moisture and CO2 from the air. Underneath it, there is another reconstructed layer of ca. 20 nm in thickness, showing rock salt/spinel-like features. Our results provide insight into the complex interfacial degradation phenomena and future directions for the development of high-performance Ni-rich layered oxides.

11.
ACS Catal ; 12(3): 1791-1796, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35154848

RESUMO

Herein, we describe an efficient nanocopper-catalyzed Alder-ene reaction of allenynamides. The copper nanoparticles were immobilized on amino-functionalized microcrystalline cellulose. A solvent-controlled chemoselectivity of the reaction was observed, leading to the chemodivergent synthesis of pyrrolines (2,5-dihydropyrroles) and pyrroles. The heterogeneous copper catalyst exhibits high efficiency and good recyclability in the Alder-ene reaction, constituting a highly attractive catalytic system from an economical and environmental point of view.

12.
ACS Appl Mater Interfaces ; 13(50): 59962-59974, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878765

RESUMO

The zinc/copper hexacyanoferrate (Zn/CuHCF) cell has gained attention as an aqueous rechargeable zinc-ion battery (ZIB) owing to its open framework, excellent rate capability, and high safety. However, both the Zn anode and the CuHCF cathode show unavoidable signs of aging during cycling, though the underlying mechanisms have remained somewhat ambiguous. Here, we present an in-depth study of the CuHCF cathode by employing various X-ray spectroscopic techniques. This allows us to distinguish between structure-related aging effects and charge compensation processes associated with electroactive metal centers upon Zn2+ ion insertion/deinsertion. By combining high-angle annular dark-field-scanning electron transmission microscopy, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy, and elemental analysis, we reconstruct the picture of both the bulk and the surface. First, we identify a set of previously debated X-ray diffraction peaks appearing at early stages of cycling (below 200 cycles) in CuHCF. Our data suggest that these peaks are unrelated to hypothetical ZnxCu1-xHCF phases or to oxidic phases, but are caused by partial intercalation of ZnSO4 into graphitic carbon. We further conclude that Cu is the unstable species during aging, whose dissolution is significant at the surface of the CuHCF particles. This triggers Zn2+ ions to enter newly formed Cu vacancies, in addition to native Fe vacancies already present in the bulk, which causes a reduction of nearby metal sites. This is distinct from the charge compensation process where both the Cu2+/Cu+ and Fe3+/Fe2+ redox couples participate throughout the bulk. By tracking the K-edge fluorescence using operando XAS coupled with cyclic voltammetry, we successfully link the aging effect to the activation of the Fe3+/Fe2+ redox couple as a consequence of Cu dissolution. This explains the progressive increase in the voltage of the charge/discharge plateaus upon repeated cycling. We also find that SO42- anions reversibly insert into CuHCF during charge. Our work clarifies several intriguing structural and redox-mediated aging mechanisms in the CuHCF cathode and pinpoints parameters that correlate with the performance, which will hold importance for the development of future Prussian blue analogue-type cathodes for aqueous rechargeable ZIBs.

13.
Chem Commun (Camb) ; 57(70): 8814-8817, 2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34382975

RESUMO

The assembly of cellulose-based artificial plant cell wall (APCW) structures that contain different types of catalysts is a powerful strategy for the development of cascade reactions. Here we disclose an APCW catalytic system containing a lipase enzyme and nanopalladium particles that transform a racemic amine into the corresponding enantiomerically pure amide in high yield via a dynamic kinetic resolution.

14.
ACS Catal ; 11(5): 2999-3008, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33842022

RESUMO

A well-studied heterogeneous palladium(II) catalyst used for the cycloisomerization of acetylenic acids is known to be susceptible to deactivation through reduction. To gain a deeper understanding of this deactivation process and to enable the design of a reactivation strategy, in situ X-ray absorption spectroscopy (XAS) was used. With this technique, changes in the palladium oxidation state and coordination environment could be studied in close detail, which provided experimental evidence that the deactivation was primarily caused by triethylamine-promoted reduction of palladium(II) to metallic palladium nanoparticles. Furthermore, it was observed that the choice of the acetylenic acid substrate influenced the distribution between palladium(II) and palladium(0) species in the heterogeneous catalyst after the reaction. From the mechanistic insight gained through XAS, an improved catalytic protocol was developed that did not suffer from deactivation and allowed for more efficient recycling of the catalyst.

15.
ACS Appl Mater Interfaces ; 13(3): 3867-3880, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33434003

RESUMO

Dual-ion batteries (DIBs) generally operate beyond 4.7 V vs Li+/Li0 and rely on the intercalation of both cations and anions in graphite electrodes. Major challenges facing the development of DIBs are linked to electrolyte decomposition at the cathode-electrolyte interface (CEI), graphite exfoliation, and corrosion of Al current collectors. In this work, X-ray photoelectron spectroscopy (XPS) is employed to gain a broad understanding of the nature and dynamics of the CEI built on anion-intercalated graphite cycled both in highly concentrated electrolytes (HCEs) of common lithium salts (LiPF6, LiFSI, and LiTFSI) in carbonate solvents and in a typical ionic liquid. Though Al metal current collectors were adequately stable in all HCEs, the Coulombic efficiency was substantially higher for HCEs based on LiFSI and LiTFSI salts. Specific capacities ranging from 80 to 100 mAh g-1 were achieved with a Coulombic efficiency above 90% over extended cycling, but cells with LiPF6-based electrolytes were characterized by <70% Coulombic efficiency and specific capacities of merely ca. 60 mAh g-1. The poor performance in LiPF6-containing electrolytes is indicative of the continual buildup of decomposition products at the interface due to oxidation, forming a thick interfacial layer rich in LixPFy, POxFy, LixPOyFz, and organic carbonates as evidenced by XPS. In contrast, insights from XPS analyses suggested that anion intercalation and deintercalation processes in the range from 3 to 5.1 V give rise to scant or extremely thin surface layers on graphite electrodes cycled in LiFSI- and LiTFSI-containing HCEs, even allowing for probing anions intercalated in the near-surface bulk. In addition, ex situ Raman, SEM and TEM characterizations revealed the presence of a thick coating on graphite particles cycled in LiPF6-based electrolytes regardless of salt concentration, while hardly any surface film was observed in the case of concentrated LiFSI and LiTFSI electrolytes.

16.
Small ; 17(6): e2006434, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33373094

RESUMO

Gaining control over the nanoscale assembly of different electrode components in energy storage systems can open the door for design and fabrication of new electrode and device architectures that are not currently feasible. This work presents aqueous layer-by-layer (LbL) self-assembly as a route towards design and fabrication of advanced lithium-ion batteries (LIBs) with unprecedented control over the structure of the electrode at the nanoscale, and with possibilities for various new designs of batteries beyond the conventional planar systems. LbL self-assembly is a greener fabrication route utilizing aqueous dispersions that allow various Li+ intercalating materials assembled in complex 3D porous substrates. The spatial precision of positioning of the electrode components, including ion intercalating phase and electron-conducting phase, is down to nanometer resolution. This capable approach makes a lithium titanate anode delivering a specific capacity of 167 mAh g-1 at 0.1C and having comparable performances to conventional slurry-cast electrodes at current densities up to 100C. It also enables high flexibility in the design and fabrication of the electrodes where various advanced multilayered nanostructures can be tailored for optimal electrode performance by choosing cationic polyelectrolytes with different molecular sizes. A full-cell LIB with excellent mechanical resilience is built on porous insulating foams.

17.
ACS Nano ; 14(12): 17004-17017, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33306909

RESUMO

The engineering of multifunctional biomaterials using a facile sustainable methodology that follows the principles of green chemistry is still largely unexplored but would be very beneficial to the world. Here, the employment of catalytic reactions in combination with biomass-derived starting materials in the design of biomaterials would promote the development of eco-friendly technologies and sustainable materials. Herein, we disclose the combination of two catalytic cycles (combined catalysis) comprising oxidative decarboxylation and quinone-catechol redox catalysis for engineering lignin-based multifunctional antimicrobial hydrogels. The bioinspired design mimics the catechol chemistry employed by marine mussels in nature. The resultant multifunctional sustainable hydrogels (1) are robust and elastic, (2) have strong antimicrobial activity, (3) are adhesive to skin tissue and various other surfaces, and (4) are able to self-mend. A systematic characterization was carried out to fully elucidate and understand the facile and efficient catalytic strategy and the subsequent multifunctional materials. Electron paramagnetic resonance analysis confirmed the long-lasting quinone-catechol redox environment within the hydrogel system. Initial in vitro biocompatibility studies demonstrated the low toxicity of the hydrogels. This proof-of-concept strategy could be developed into an important technological platform for the eco-friendly, bioinspired design of other multifunctional hydrogels and their use in various biomedical and flexible electronic applications.

18.
Nanomedicine (Lond) ; 15(25): 2433-2445, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32914695

RESUMO

Aim: To examine the multimodal contrasting ability of gold-dotted magnetic nanoparticles (Au*MNPs) for magnetic resonance (MR), computed tomography (CT) and intravascular ultrasound (IVUS) imaging. Materials & methods: Au*MNPs were prepared by adapting an impregnation method, without using surface capping reagents and characterized (transmission electron microscopy, x-ray diffraction and Fourier-transform infrared spectroscopy) with their in vitro cytotoxicity assessed, followed by imaging assessments. Results: The contrast-enhancing ability of Au*MNPs was shown to be concentration-dependent across MR, CT and IVUS imaging. The Au content of the Au*MNP led to evident increases of the IVUS signal. Conclusion: We demonstrated that Au*MNPs showed concentration-dependent contrast-enhancing ability in MRI and CT imaging, and for the first-time in IVUS imaging due to the Au content. These Au*MNPs are promising toward solidifying tri-modal imaging-based theragnostics.


Assuntos
Ouro , Nanopartículas de Magnetita , Linhagem Celular Tumoral , Humanos , Imageamento por Ressonância Magnética , Nanopartículas Metálicas , Tomografia Computadorizada por Raios X , Ultrassonografia de Intervenção
19.
Sci Rep ; 10(1): 6407, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286367

RESUMO

A new eco-friendly approach for the preparation of sustainable heterogeneous palladium catalysts from rice husk-derived biogenic silica (RHP-Si and RHU-Si). The designed heterogeneously supported palladium species (RHP-Si-NH2-Pd and RHU-Si-NH2-Pd) were fully characterized and successfully employed as catalysts for various chemical transformations (C-C bond-forming reactions, aerobic oxidations and carbocyclizations). Suzuki-Miyaura transformations were highly efficient in a green solvent system (H2O:EtOH (1:1) with excellent recyclability, providing the cross-coupling products with a wide range of functionalities in high isolated yields (up to 99%). Palladium species (Pd(0)-nanoparticles or Pd(II)) were also efficient catalysts in the green aerobic oxidation of an allylic alcohol and a co-catalytic stereoselective cascade carbocyclization transformation. In the latter case, a quaternary stereocenter was formed with excellent stereoselectivity (up to 27:1 dr).

20.
RSC Adv ; 10(12): 6873-6883, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35493899

RESUMO

Titanium (oxo-) alkoxide phosphonate complexes were synthesized using different titanium precursors and tert-butylphosphonic acid (tBPA) as molecular models for interaction between phosphonates and titania surfaces and to investigate the solution stability of these species. Reflux of titanium(iv) ethoxide or titanium(iv)(diisopropoxide)bis(2,4-pentadionate) with tert-butylphosphonic acid in toluene-ethanol mixture or acetone yielded seven titanium alkoxide phosphonate complexes; [Ti5(µ3-O)(µ2-O)(µ-HOEt)2(µ-OEt)3(µ2-OEt)(µ3-tBPA)3(µ3-HtBPA)(µ2-tBPA)2(µ2-HtBPA)]·3EtOH, 1, [Ti4O(µ-OEt)5(µ2-OEt)7(µ3-tBPA)], 2, [Ti4(µ2-O)2(µ-OEt)2(µ-HOEt)2(µ2-tPBA)2(µ2-HtPBA)6]·4EtOH, 3, [Ti4(µ2-O)2(µ-OEt)2(µ-HOEt)2(µ2-tPBA)2(µ2-HtPBA)6]·2EtOH, 4, [Ti6(µ2-O)(µ3-O)2(µ2-OEt)5(µ-OEt)6(µ3-tBPA)3(µ3-HtBPA)], 5, [Ti4(µ-iOPr)4(acac)4(µ2-tBPA)4], 6 and [Ti5(µ4-O)(µ2-O)3(µ2-OEt)4(µ-OEt)6(µ-HOEt)(µ3-tBPA)]2, 7. The binding mode of tBPA to the titanium oxo-core were either double or triple bridging or a combination of the two. No monodentate or chelating coordination was observed. 31P NMR spectrometry of dissolved single crystals indicates that 1 and 5 retain their solid-state structures in solution, the latter even on moderate heating, while 6 and 7 dissolved into several other forms. The complexes were found to be sensitive towards hydrolysis, proceeding in a topotactic fashion with densification of the material into plates and lamellae resulting finally in "core-shell" nanoparticles with a crystalline core (anatase) and an amorphous outer shell upon contact with water at room temperature as observed by HRTEM and AFM analyses. 31P NMR data supported degradation after addition of water to solutions of the complexes. Hydrolysis under different conditions affords complex oxide structures of different morphologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...