Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Sci Rep ; 14(1): 15873, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982272

RESUMO

Apolipoprotein E (APOE) is a major cholesterol carrier responsible for lipid transport and injury repair in the brain. The human APOE gene (h-APOE) has 3 naturally occurring alleles: ε3, the common allele; ε4, which increases Alzheimer's disease (AD) risk up to 15-fold; and ε2, the rare allele which protects against AD. Although APOE4 has negative effects on neurocognition in old age, its persistence in the population suggests a survival advantage. We investigated the relationship between APOE genotypes and fertility in EFAD mice, a transgenic mouse model expressing h-APOE. We show that APOE4 transgenic mice had the highest level of reproductive performance, followed by APOE3 and APOE2. Intriguingly, APOE3 pregnancies had more fetal resorptions and reduced fetal weights relative to APOE4 pregnancies. In conclusion, APOE genotypes impact fertility and pregnancy outcomes in female mice, in concordance with findings in human populations. These mouse models may help elucidate how h-APOE4 promotes reproductive fitness at the cost of AD in later life.


Assuntos
Doença de Alzheimer , Apolipoproteínas E , Modelos Animais de Doenças , Fertilidade , Camundongos Transgênicos , Animais , Doença de Alzheimer/genética , Feminino , Camundongos , Fertilidade/genética , Humanos , Apolipoproteínas E/genética , Apolipoproteína E4/genética , Polimorfismo Genético , Gravidez , Genótipo , Apolipoproteína E3/genética , Alelos
2.
Front Endocrinol (Lausanne) ; 15: 1374825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742194

RESUMO

Increasing evidence suggests that female individuals have a higher Alzheimer's disease (AD) risk associated with post-menopausal loss of circulating estradiol (E2). However, clinical data are conflicting on whether E2 lowers AD risk. One potential contributing factor is APOE. The greatest genetic risk factor for AD is APOE4, a factor that is pronounced in female individuals post-menopause. Clinical data suggests that APOE impacts the response of AD patients to E2 replacement therapy. However, whether APOE4 prevents, is neutral, or promotes any positive effects of E2 is unclear. Therefore, our goal was to determine whether APOE modulates the impact of E2 on behavior and AD pathology in vivo. To that end, mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß42 were ovariectomized at either 4 months (early) or 8 months (late) and treated with vehicle or E2 for 4 months. In E3FAD mice, we found that E2 mitigated the detrimental effect of ovariectomy on memory, with no effect on Aß in the early paradigm and only improved learning in the late paradigm. Although E2 lowered Aß in E4FAD mice in the early paradigm, there was no impact on learning or memory, possibly due to higher Aß pathology compared to E3FAD mice. In the late paradigm, there was no effect on learning/memory and Aß pathology in E4FAD mice. Collectively, these data support the idea that, in the presence of Aß pathology, APOE impacts the response to E2 supplementation post-menopause.


Assuntos
Apolipoproteína E3 , Apolipoproteína E4 , Estradiol , Ovariectomia , Animais , Feminino , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Estradiol/farmacologia , Camundongos Transgênicos
3.
Magn Reson Imaging ; 109: 264-270, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522624

RESUMO

Proton exchange underpins essential mechanisms in diverse MR imaging contrasts. Omega plots have proven effective in mapping proton exchange rates (kex) in live human brains, enabling the differentiation of MS lesion activities and characterization of ischemic stroke. However, Omega plots require extended saturation durations (typically 5 to 10 s), resulting in high specific absorption rates (SAR) that can hinder clinical feasibility. In this study, we introduce a novel kex mapping approach, named induced Saturation Transfer Recovery Steady-States (iSTRESS). iSTRESS integrates an excitation flip angle pulse prior to chemical exchange saturation transfer (CEST) saturation, effectively aligning the magnetization with its steady-state value. This innovation reduces saturation times and mitigates SAR concerns. The formula for iSTRESS-based kex quantification was derived theoretically, involving two measurements with distinct excitation flip angles and saturation B1 values. Bloch-McConnell simulations confirmed that iSTRESS-based kex values closely matched input values (R2 > 0.99). An iSTRESS MRI sequence was implemented on a 9.4 T preclinical MRI, imaging protein phantoms with pH values ranging from 6.2 to 7.4 (n = 4). Z-spectra were acquired using excitation flip angles of 30° and 60°, followed by CEST saturation at powers of 30 and 120 Hz respectively, with a total saturation time of <1 s, resulting in two iSTRESS states for kex mapping. kex maps derived from the phantom study exhibited a linear correlation (R2 > 0.99) with Omega plot results. The developed iSTRESS method allows for kex quantification with significantly reduced saturation times, effectively minimizing SAR concerns.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Concentração de Íons de Hidrogênio , Meios de Contraste , Imagens de Fantasmas
4.
ACS Med Chem Lett ; 15(2): 205-214, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38352833

RESUMO

Evidence supports boosting nicotinamide adenine dinucleotide (NAD+) to counteract oxidative stress in aging and neurodegenerative disease. One approach is to enhance the activity of nicotinamide phosphoribosyltransferase (NAMPT). Novel NAMPT positive allosteric modulators (N-PAMs) were identified. A cocrystal structure confirmed N-PAM binding to the NAMPT rear channel. Early hit-to-lead efforts led to a 1.88-fold maximum increase in the level of NAD+ in human THP-1 cells. Select N-PAMs were assessed for mitigation of reactive oxygen species (ROS) in HT-22 neuronal cells subject to inflammatory stress using tumor necrosis factor alpha (TNFα). N-PAMs that increased NAD+ more effectively in THP-1 cells attenuated TNFα-induced ROS more effectively in HT-22 cells. The most efficacious N-PAM completely attenuated ROS elevation in glutamate-stressed HT-22 cells, a model of neuronal excitotoxicity. This work demonstrates for the first time that N-PAMs are capable of mitigating elevated ROS in neurons stressed with TNFα and glutamate and provides support for further N-PAM optimization for treatment of neurodegenerative diseases.

5.
J Neuroimmunol ; 388: 578309, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335781

RESUMO

Blood-brain barrier (BBB) permeability can cause neuroinflammation and cognitive impairment. Caveolin-1 (Cav-1) critically regulates BBB permeability, but its influence on the BBB and consequent neurological outcomes in respiratory viral infections is unknown. We used Cav-1-deficient mice with genetically encoded fluorescent endothelial tight junctions to determine how Cav-1 influences BBB permeability, neuroinflammation, and cognitive impairment following respiratory infection with mouse adapted (MA10) SARS-CoV-2 as a model for COVID-19. We found that SARS-CoV-2 infection increased brain endothelial Cav-1 and increased transcellular BBB permeability to albumin, decreased paracellular BBB Claudin-5 tight junctions, and caused T lymphocyte infiltration in the hippocampus, a region important for learning and memory. Concordantly, we observed learning and memory deficits in SARS-CoV-2 infected mice. Importantly, genetic deficiency in Cav-1 attenuated transcellular BBB permeability and paracellular BBB tight junction losses, T lymphocyte infiltration, and gliosis induced by SARS-CoV-2 infection. Moreover, Cav-1 KO mice were protected from the learning and memory deficits caused by SARS-CoV-2 infection. These results establish the contribution of Cav-1 to BBB permeability and behavioral dysfunction induced by SARS-CoV-2 neuroinflammation.


Assuntos
COVID-19 , Disfunção Cognitiva , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Disfunção Cognitiva/etiologia , COVID-19/complicações , Transtornos da Memória/etiologia , Doenças Neuroinflamatórias , Permeabilidade , SARS-CoV-2/metabolismo
6.
Brain ; 147(5): 1636-1643, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38306655

RESUMO

Respiratory infection with SARS-CoV-2 causes systemic vascular inflammation and cognitive impairment. We sought to identify the underlying mechanisms mediating cerebrovascular dysfunction and inflammation following mild respiratory SARS-CoV-2 infection. To this end, we performed unbiased transcriptional analysis to identify brain endothelial cell signalling pathways dysregulated by mouse adapted SARS-CoV-2 MA10 in aged immunocompetent C57Bl/6 mice in vivo. This analysis revealed significant suppression of Wnt/ß-catenin signalling, a critical regulator of blood-brain barrier (BBB) integrity. We therefore hypothesized that enhancing cerebrovascular Wnt/ß-catenin activity would offer protection against BBB permeability, neuroinflammation, and neurological signs in acute infection. Indeed, we found that delivery of cerebrovascular-targeted, engineered Wnt7a ligands protected BBB integrity, reduced T-cell infiltration of the brain, and reduced microglial activation in SARS-CoV-2 infection. Importantly, this strategy also mitigated SARS-CoV-2 induced deficits in the novel object recognition assay for learning and memory and the pole descent task for bradykinesia. These observations suggest that enhancement of Wnt/ß-catenin signalling or its downstream effectors could be potential interventional strategies for restoring cognitive health following viral infections.


Assuntos
Barreira Hematoencefálica , COVID-19 , Disfunção Cognitiva , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Proteínas Wnt , Animais , Barreira Hematoencefálica/metabolismo , COVID-19/complicações , Camundongos , Proteínas Wnt/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Via de Sinalização Wnt/fisiologia , Ligantes , SARS-CoV-2 , Masculino , Encéfalo/metabolismo
7.
J Alzheimers Dis ; 97(4): 1629-1639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306049

RESUMO

APOE2 lowers Alzheimer's disease (AD) risk; unfortunately, the mechanism remains poorly understood and the use of mice models is problematic as APOE2 homozygosity is associated with hyperlipidemia. In this study, we developed mice that are heterozygous for APOE2 and APOE3 or APOE4 and overexpress amyloid-ß peptide (Aß) (EFAD) to evaluate the effect of APOE2 dosage on Aß pathology. We found that heterozygous mice do not exhibit hyperlipidemia. Hippocampal but not cortical levels of soluble Aß42 followed the order E2/2FAD > E2/3FAD≤E3/3FAD and E2/2FAD > E2/4FAD < E4/4FAD without an effect on insoluble Aß42. These findings offer initial insights on the impact of APOE2 on Aß pathology.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Apolipoproteína E2 , Hipocampo , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E3 , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Hipocampo/patologia , Hiperlipidemias/genética , Camundongos Endogâmicos , Camundongos Transgênicos
8.
Mol Neurobiol ; 61(1): 120-131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37589833

RESUMO

Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3, APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic, and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß. We found that compared to E3FAD mice, E4FAD mice have lower synaptic activity, but higher levels of paired-pulse facilitation (PPF) and long-term potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aß are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high-frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype, and angiotensin II in AD.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Camundongos , Humanos , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Angiotensina II/farmacologia , Apolipoproteína E3/genética , Camundongos Transgênicos , Apolipoproteínas E/genética , Doença de Alzheimer/metabolismo , Potenciação de Longa Duração
9.
Alzheimers Res Ther ; 15(1): 216, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102668

RESUMO

BACKGROUND: Alzheimer's disease (AD) is characterized by cognitive dysfunction and amyloid plaques composed of the amyloid-beta peptide (Aß). APOE is the greatest genetic risk for AD with APOE4 increasing risk up to ~ 15-fold compared to APOE3. Evidence suggests that levels and lipidation of the apoE protein could regulate AD progression. In glia, apoE is lipidated via cholesterol efflux from intracellular pools, primarily by the ATP-binding cassette transporter A1 (ABCA1). Therefore, increasing ABCA1 activity is suggested to be a therapeutic approach for AD. CS-6253 (CS) is a novel apoE mimetic peptide that was developed to bind and stabilize ABCA1 and maintain its localization into the plasma membrane therefore promoting cholesterol efflux. The goal of this study was to determine whether CS could modulate apoE levels and lipidation, Aß pathology, and behavior in a model that expresses human APOE and overproduce Aß. METHODS: In vitro, APOE3-glia or APOE4-glia were treated with CS. In vivo, male and female, E3FAD (5xFAD+/-/APOE3+/+) and E4FAD (5xFAD+/-/APOE4+/+) mice were treated with CS via intraperitoneal injection at early (from 4 to 8 months of age) and late ages (from 8 to 10 months of age). ApoE levels, ABCA1 levels and, apoE lipidation were measured by western blot and ELISA. Aß and amyloid levels were assessed by histochemistry and ELISA. Learning and memory were tested by Morris Water Maze and synaptic proteins were measured by Western blot. RESULTS: CS treatment increased apoE levels and cholesterol efflux in primary glial cultures. In young male E3FAD mice, CS treatment increased soluble apoE and lipid-associated apoE, reduced soluble oAß and insoluble Aß levels as well as Aß and amyloid deposition, and improved memory and synaptic protein levels. CS treatment did not induce any therapeutic benefits in young female E3FAD and E4FAD mice or in any groups when treatment was started at later ages. CONCLUSIONS: CS treatment reduced Aß pathology and improved memory only in young male E3FAD, the cohort with the least AD pathology. Therefore, the degree of Aß pathology or Aß overproduction may impact the ability of targeting ABCA1 to be an effective AD therapeutic. This suggests that ABCA1-stabilizing treatment by CS-6253 works best in conditions of modest Aß levels.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Camundongos , Masculino , Humanos , Feminino , Animais , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Camundongos Transgênicos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Colesterol
10.
Front Aging Neurosci ; 15: 1279343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020764

RESUMO

Increasing evidence supports that age, APOE and sex interact to modulate Alzheimer's disease (AD) risk, however the underlying pathways are unclear. One way that AD risk factors may modulate cognition is by impacting amyloid beta (Aß) accumulation as plaques, and/or neuroinflammation Therefore, the goal of the present study was to evaluate the extent to which age, APOE and sex modulate Aß pathology, neuroinflammation and behavior in vivo. To achieve this goal, we utilized the EFAD mice, which express human APOE3 or APOE4 and have five familial AD mutations (FAD) that result in Aß42 overproduction. We assessed Aß levels, reactive glia and Morris water maze performance in 6-, 10-, 14-, and 18-month-old EFAD mice. Female APOE4 mice had the highest Aß deposition, fibrillar amyloid deposits and neuroinflammation as well as earlier behavior deficits. Interestingly, we found that female APOE3 mice and male APOE4 mice had similar levels of pathology. Collectively our data support that the combination of APOE4 and female sex is the most detrimental combination for AD, and that at older ages, female sex may be equivalent to APOE4 genotype.

11.
Alzheimers Res Ther ; 15(1): 181, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858252

RESUMO

BACKGROUND: APOE genotype is the greatest genetic risk factor for sporadic Alzheimer's disease (AD). APOE4 increases AD risk up to 12-fold compared to APOE3, an effect that is greater in females. Evidence suggests that one-way APOE could modulate AD risk and progression through neuroinflammation. Indeed, APOE4 is associated with higher glial activation and cytokine levels in AD patients and mice. Therefore, identifying pathways that contribute to APOE4-associated neuroinflammation is an important approach for understanding and treating AD. Human and in vivo evidence suggests that TLR4, one of the key receptors involved in the innate immune system, could be involved in APOE-modulated neuroinflammation. Consistent with that idea, we previously demonstrated that the TLR4 antagonist IAXO-101 can reduce LPS- and Aß-induced cytokine secretion in APOE4 glial cultures. Therefore, the goal of this study was to advance these findings and determine whether IAXO-101 can modulate neuroinflammation, Aß pathology, and behavior in mice that express APOE4. METHODS: We used mice that express five familial AD mutations and human APOE3 (E3FAD) or APOE4 (E4FAD). Female and male E4FAD mice and female E3FAD mice were treated with vehicle or IAXO-101 in two treatment paradigms: prevention from 4 to 6 months of age or reversal from 6 to 7 months of age. Learning and memory were assessed by modified Morris water maze. Aß deposition, fibrillar amyloid deposition, astrogliosis, and microgliosis were assessed by immunohistochemistry. Soluble levels of Aß and apoE, insoluble levels of apoE and Aß, and IL-1ß were measured by ELISA. RESULTS: IAXO-101 treatment resulted in lower Iba-1 coverage, lower number of reactive microglia, and improved memory in female E4FAD mice in both prevention and reversal paradigms. IAXO-101-treated male E4FAD mice also had lower Iba-1 coverage and reactivity in the RVS paradigm, but there was no effect on behavior. There was also no effect of IAXO-101 treatment on neuroinflammation and behavior in female E3FAD mice. CONCLUSION: Our data supports that TLR4 is a potential mechanistic therapeutic target for modulating neuroinflammation and cognition in APOE4 females.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Animais , Feminino , Masculino , Camundongos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Citocinas , Camundongos Transgênicos , Doenças Neuroinflamatórias , Receptor 4 Toll-Like/uso terapêutico
12.
Arterioscler Thromb Vasc Biol ; 43(10): 1952-1966, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37650329

RESUMO

BACKGROUND: Specialized brain endothelial cells and human APOE3 are independently important for neurovascular function, yet whether APOE3 expression by endothelial cells contributes to brain function is currently unknown. In the present study, we determined whether the loss of endothelial cell APOE3 impacts brain vascular and neural function. METHODS: We developed APOE3fl/fl/Cdh5(PAC)-CreERT2+/- (APOE3Cre+/-) and APOE3fl/fl/Cdh5(PAC)-CreERT2-/- (APOE3Cre-/-, control) mice and induced endothelial cell APOE3 knockdown with tamoxifen at ≈4 to 5 weeks of age. Neurovascular and neuronal function were evaluated by biochemistry, immunohistochemistry, behavioral testing, and electrophysiology at 9 months of age. RESULTS: We found that the loss of endothelial APOE3 expression was sufficient to cause neurovascular dysfunction including higher permeability and lower vessel coverage in tandem with deficits in spatial memory and fear memory extinction and a disruption of cortical excitatory/inhibitory balance. CONCLUSIONS: Our data collectively support the novel concept that endothelial APOE3 plays a critical role in the regulation of the neurovasculature, neural circuit function, and behavior.


Assuntos
Encéfalo , Células Endoteliais , Camundongos , Humanos , Animais , Apolipoproteína E3/metabolismo , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Apolipoproteína E4
13.
Res Sq ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292788

RESUMO

Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3 , APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß. We found that compared to E3FAD mice, E4FAD mice had lower basal synaptic activity, but higher levels of paired pulse facilitation (PPF) and Long-Term Potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aß are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype and angiotensin II in AD.

14.
Front Mol Neurosci ; 15: 896314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620447

RESUMO

Krabbe Disease (KD) is a lysosomal storage disorder characterized by the genetic deficiency of the lysosomal enzyme ß-galactosyl-ceramidase (GALC). Deficit or a reduction in the activity of the GALC enzyme has been correlated with the progressive accumulation of the sphingolipid metabolite psychosine, which leads to local disruption in lipid raft architecture, diffuse demyelination, astrogliosis, and globoid cell formation. The twitcher mouse, the most used animal model, has a nonsense mutation, which limits the study of how different mutations impact the processing and activity of GALC enzyme. To partially address this, we generated two new transgenic mouse models carrying point mutations frequently found in infantile and adult forms of KD. Using CRISPR-Cas9 gene editing, point mutations T513M (infantile) and G41S (adult) were introduced in the murine GALC gene and stable founders were generated. We show that GALC T513M/T513M mice are short lived, have the greatest decrease in GALC activity, have sharp increases of psychosine, and rapidly progress into a severe and lethal neurological phenotype. In contrast, GALC G41S/G41S mice have normal lifespan, modest decreases of GALC, and minimal psychosine accumulation, but develop adult mild inflammatory demyelination and slight declines in coordination, motor skills, and memory. These two novel transgenic lines offer the possibility to study the mechanisms by which two distinct GALC mutations affect the trafficking of mutated GALC and modify phenotypic manifestations in early- vs adult-onset KD.

15.
Front Neurosci ; 15: 690410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276296

RESUMO

Compared with APOE3, APOE4 is associated with greater age-related cognitive decline and higher risk of neurodegenerative disorders. Therefore, development of supplements that target APOE genotype-modulated processes could provide a great benefit for the aging population. Evidence suggests a link between APOE genotype and docosahexaenoic acid (DHA); however, clinical studies with current DHA supplements have produced negative results in dementia. The lack of beneficial effects with current DHA supplements may be related to limited bioavailability, as the optimal form of DHA for brain uptake is lysophosphatidylcholine (LPC)-DHA. We previously developed a method to enrich the LPC-DHA content of krill oil through lipase treatment (LT-krill oil), which resulted in fivefold higher enrichment in brain DHA levels in wild-type mice compared with untreated krill oil. Here, we evaluated the effect of a control diet, diet containing krill oil, or a diet containing LT-krill oil in APOE3- and APOE4-targeted replacement mice (APOE-TR mice; treated from 4 to 12 months of age). We found that DHA levels in the plasma and hippocampus are lower in APOE4-TR mice and that LT-krill oil increased DHA levels in the plasma and hippocampus of both APOE3- and APOE4-TR mice. In APOE4-TR mice, LT-krill oil treatment resulted in higher levels of the synaptic vesicle protein SV2A and improved performance on the novel object recognition test. In conclusion, our data demonstrate that LPC-DHA/EPA-enriched krill oil can increase brain DHA and improve memory-relevant behavior in mice that express APOE4. Therefore, long-term use of LT-krill oil supplements may on some level protect against age-related neurodegeneration.

16.
Front Cell Dev Biol ; 9: 668296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178992

RESUMO

Reports of APOE4-associated neurovascular dysfunction during aging and in neurodegenerative disorders has led to ongoing research to identify underlying mechanisms. In this study, we focused on whether the APOE genotype of brain endothelial cells modulates their own phenotype. We utilized a modified primary mouse brain endothelial cell isolation protocol that enabled us to perform experiments without subculture. Through initial characterization we found, that compared to APOE3, APOE4 brain endothelial cells produce less apolipoprotein E (apoE) and have altered metabolic and inflammatory gene expression profiles. Further analysis revealed APOE4 brain endothelial cultures have higher preference for oxidative phosphorylation over glycolysis and, accordingly, higher markers of mitochondrial activity. Mitochondrial activity generates reactive oxygen species, and, with APOE4, there were higher mitochondrial superoxide levels, lower levels of antioxidants related to heme and glutathione and higher markers/outcomes of oxidative damage to proteins and lipids. In parallel, or resulting from reactive oxygen species, there was greater inflammation in APOE4 brain endothelial cells including higher chemokine levels and immune cell adhesion under basal conditions and after low-dose lipopolysaccharide (LPS) treatment. In addition, paracellular permeability was higher in APOE4 brain endothelial cells in basal conditions and after high-dose LPS treatment. Finally, we found that a nuclear receptor Rev-Erb agonist, SR9009, improved functional metabolic markers, lowered inflammation and modulated paracellular permeability at baseline and following LPS treatment in APOE4 brain endothelial cells. Together, our data suggest that autocrine signaling of apoE in brain endothelial cells represents a novel cellular mechanism for how APOE regulates neurovascular function.

17.
Front Cell Dev Biol ; 9: 656521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796539

RESUMO

Seizures are emerging as a common symptom in Alzheimer's disease (AD) patients, often attributed to high levels of amyloid ß (Aß). However, the extent that AD disease risk factors modulate seizure activity in aging and AD-relevant contexts is unclear. APOE4 is the greatest genetic risk factor for AD and has been linked to seizures independent of AD and Aß. The goal of the present study was to evaluate the role of APOE genotype in modulating seizures in the absence and presence of high Aß levels in vivo. To achieve this goal, we utilized EFAD mice, which express human APOE3 or APOE4 in the absence (EFAD-) or presence (EFAD+) of familial AD mutations that result in Aß overproduction. When quantified during cage change day, we found that unlike APOE3, APOE4 is associated with tonic-clonic seizures. Interestingly, there were lower tonic-clonic seizures in E4FAD+ mice compared to E4FAD- mice. Restraint handing and auditory stimuli failed to recapitulate the tonic-clonic phenotype in EFAD mice that express APOE4. However, after chemical-induction with pentylenetetrazole, there was a higher incidence of tonic-clonic seizures with APOE4 compared to APOE3. Interestingly, the distribution of seizures to the tonic-clonic phenotype was higher with FAD mutations. These data support that APOE4 is associated with higher tonic-clonic seizures in vivo, and that FAD mutations impact tonic-clonic seizures in a paradigm dependent manner.

18.
Am J Transl Res ; 13(3): 1352-1364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841661

RESUMO

Arterial stiffness is an effective predictor of atherosclerosis. Measurement of pulse-wave velocity (PWV) is a gold-standard approach to study arterial stiffness. This study aims to examine arterial stiffness and heart functions via echocardiography at an early stage of atherosclerosis. A model of atherosclerosis in ApoE-knockout (ApoE-/- ) mice fed on high-fat diet (HFD) was used, with normal chow diet (ND) as a control. Stiffness of aortic arch and carotid arteries and left ventricular (LV) systolic/diastolic functions were measured by echocardiography. The plasma cholesterol levels and atherosclerotic plaque areas in the aortas were measured. The PWV values of aortic arch and carotid arteries were compared at 2, 4, 6 and 8 weeks with different diets. Compared with ND mice, PWV values in aortic arch and carotid arteries were significantly increased in HFD mice after 8 weeks (Aortic arch: 516.65 ± 216.89 cm/s vs. 192.53 ± 71.71 cm/s; Carotid arteries: 514.26 ± 211.01 cm/s vs. 188.03 ± 75.14 cm/s, respectively; both P < 0.01) accompanied by the decrease in LV systolic/diastolic functions. These were well correlated with the increase in plasma cholesterol levels. Echo-based PWV measurement in the aortic arch was found more sensitive to predict atherosclerosis than in the carotid arteries in ApoE-/- mice. Measuring aortic arch PWV via echocardiography could represent a new diagnostic strategy for early detection of atherosclerosis.

19.
Front Neurosci ; 15: 628403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642985

RESUMO

Evidence suggests that angiotensin receptor blockers (ARBs) could be beneficial for Alzheimer's disease (AD) patients independent of any effects on hypertension. However, studies in rodent models directly testing the activity of ARB treatment on behavior and AD-relevent pathology including neuroinflammation, Aß levels, and cerebrovascular function, have produced mixed results. APOE4 is a major genetic risk factor for AD and has been linked to many of the same functions as those purported to be modulated by ARB treatment. Therefore, evaluating the effects of ARB treatment on behavior and AD-relevant pathology in mice that express human APOE4 could provide important information on whether to further develop ARBs for AD therapy. In this study, we treated female and male mice that express the human APOE4 gene in the absence (E4FAD-) or presence (E4FAD+) of high Aß levels with the ARB prodrug candesartan cilexetil for a duration of 4 months. Compared to vehicle, candesartan treatment resulted in greater memory-relevant behavior and higher hippocampal presynaptic protein levels in female, but not male, E4FAD- and E4FAD+ mice. The beneficial effects of candesartan in female E4FAD- and E4FAD+ mice occurred in tandem with lower GFAP and Iba1 levels in the hippocampus, whereas there were no effects on markers of cerebrovascular function and Aß levels. Collectively, these data imply that the effects of ARBs on AD-relevant pathology may be modulated in part by the interaction between APOE genotype and biological sex. Thus, the further development of ARBs could provide therapeutic options for targeting neuroinflammation in female APOE4 carriers.

20.
ACS Pharmacol Transl Sci ; 4(1): 372-385, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33615187

RESUMO

The calpain-cathepsin hypothesis posits a key role for elevated calpain-1 and cathepsin-B activity in the neurodegeneration underlying neurotrauma and multiple disorders including Alzheimer's disease (AD). AD clinical trials were recently halted on alicapistat, a selective calpain-1 inhibitor, because of insufficient exposure of neurons to the drug. In contrast to neuroprotection, the ability of calpain-1 and cathepsin-B inhibitors to protect the blood-brain barrier (BBB), is understudied. Since cerebrovascular dysfunction underlies vascular dementia, is caused by ischemic stroke, and is emerging as an early feature in the progression of AD, we studied protection of brain endothelial cells (BECs) by selective and nonselective calpain-1 and cathepsin-B inhibitors. We show these inhibitors protect both neurons and murine BECs from ischemia-reperfusion injury. Cultures of primary BECs from ALDH2 -/- mice that manifest enhanced oxidative stress were sensitive to ischemia, leading to reduced cell viability and loss of tight junction proteins; this damage was rescued by calpain-1 and cathepsin-B inhibitors. In ALDH2 -/- mice 24 h after mild traumatic brain injury (mTBI), BBB damage was reflected by significantly increased fluorescein extravasation and perturbation of tight junction proteins, eNOS, MMP-9, and GFAP. Both calpain and cathepsin-B inhibitors alleviated BBB dysfunction caused by mTBI. No clear advantage was shown by selective versus nonselective calpain inhibitors in these studies. The lack of recognition of the ability of calpain inhibitors to protect the BBB may have led to the premature abandonment of this therapeutic approach in AD clinical trials and requires further mechanistic studies of cerebrovascular protection by calpain-1 inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...