Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35154350

RESUMO

Tamoxifen is an effective drug for treating patients with advanced estrogen receptor-positive (ER+) breast cancer (BC), but not for all ER + BC patients. Drug tolerance is the biggest obstacle. In this study, we designed an experiment to investigate whether paeoniflorin affects the ER + BC cell's sensitivity to tamoxifen in the T47D and MCF-7 cell lines. Herein, we found that paeoniflorin inhibited cell proliferation without inducing apoptosis. However, it enhanced tamoxifen-induced apoptosis in both cell lines. Immunoblotting revealed that paeoniflorin significantly increased the already elevated Bax/Bcl2 protein expression ratio and the caspase 3 activity levels, both induced by tamoxifen. Paeoniflorin was also found to increase SIRT4 expression, and deletion of SIRT4 could significantly reverse the inhibition of cell proliferation induced by paeoniflorin and significantly decrease paeoniflorin-enhanced apoptosis induced by tamoxifen. Moreover, protein expression detection revealed that paeoniflorin enhanced the tamoxifen-induced inhibition of STAT3 activation. Besides, the deletion of SIRT4 could significantly increase STAT3 activation in the T47D and MCF-7 cells. In conclusion, paeoniflorin suppressed STAT3 activation to enhance the sensitivity of ER-positive breast cancer cells to tamoxifen through promoting SIRT4 expression.

2.
J Food Drug Anal ; 26(1): 409-415, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389581

RESUMO

Pramlintide acetate (Symlin®), a synthetic analogue of the human hormone amylin. It was approved in March 2005 as a subcutaneous injection for the adjunctive treatment of patients who have type 1 or 2 diabetes mellitus. The objective of current investigation was to study the degradation behavior of pramlintide acetate under different ICH recommended stress conditions by HPLC and LC-MS. Pramlintide acetate was subjected to stress conditions of hydrolysis (acidic or alkaline), oxidation, photolysis and thermal decomposition. Extensive degradation products were observed under the hydrolysis, oxidation or thermal stress conditions, while minimal degradation was found in the photolytic conditions. Successful separation of drug from the degradation products was achieved by the validated chromatography (RP-HPLC and SCX-HPLC) methods. Subsequent to isolation, the molecular weight of each component was determined by LC-MS. The LC-MS m/z values and fragmentation patterns of 4 impurities matched with the predicted degradation products of pramlintide acetate.


Assuntos
Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Polipeptídeo Amiloide das Ilhotas Pancreáticas/análise , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Espectrometria de Massas em Tandem , Estabilidade de Medicamentos , Humanos , Hidrólise , Polipeptídeo Amiloide das Ilhotas Pancreáticas/isolamento & purificação , Oxirredução , Fotólise , Temperatura
3.
Biol Pharm Bull ; 35(1): 65-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22223339

RESUMO

Type I interferons (IFN-α/ß) have been widely used in the treatment of many viral and malignant diseases by activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, but the side effects of protein-based IFN therapy severely limit their clinical use. Discovering small molecules to activate the JAK/STAT pathway will greatly facilitate the development of new drugs which have similar pharmacological function to IFNs but with fewer side effects. To screen a natural products-based library, we established a cell-based screening assay using human hepatoma HepG2 cells stably transfected with a plasmid where the luciferase reporter activity is driven by interferon α-stimulated response element (ISRE), the motif specifically recognized by type I IFN-induced activation of JAK/STAT pathway. Among 1,431 natural product compounds screened, four compounds (emodin, quercetin, apigenin and luteolin) were identified as activators of the JAK/STAT pathway. Further studies demonstrated that these four compounds could increase the endogenous antiviral gene expression regulated by the IFN-activated JAK/STAT pathway. The identified small molecule activators are valuable for structural modification and warrant further investigation for use in new antiviral drugs as IFN mimics or adjuvants.


Assuntos
Antivirais/farmacologia , Emodina/farmacologia , Flavonoides/farmacologia , Interferon Tipo I/farmacologia , Janus Quinases/metabolismo , Extratos Vegetais/farmacologia , Fatores de Transcrição STAT/metabolismo , Antivirais/uso terapêutico , Apigenina/farmacologia , Apigenina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Emodina/uso terapêutico , Flavonoides/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Células Hep G2 , Humanos , Interferon Tipo I/uso terapêutico , Luteolina/farmacologia , Luteolina/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Elementos de Resposta , Transdução de Sinais/efeitos dos fármacos , Viroses/tratamento farmacológico
4.
J Comput Chem ; 32(13): 2942-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21728180

RESUMO

BACKGROUND: To manage chemical structures in small laboratories is one of the important daily tasks. Few solutions are available on the internet, and most of them are closed source applications. The open-source applications typically have limited capability and basic cheminformatics functionalities. In this article, we describe an open-source solution to manage chemicals in research groups based on open source and free components. It has a user-friendly interface with the functions of chemical handling and intensive searching. RESULTS: MyMolDB is a micromolecular database solution that supports exact, substructure, similarity, and combined searching. This solution is mainly implemented using scripting language Python with a web-based interface for compound management and searching. Almost all the searches are in essence done with pure SQL on the database by using the high performance of the database engine. Thus, impressive searching speed has been archived in large data sets for no external Central Processing Unit (CPU) consuming languages were involved in the key procedure of the searching. AVAILABILITY: MyMolDB is an open-source software and can be modified and/or redistributed under GNU General Public License version 3 published by the Free Software Foundation (Free Software Foundation Inc. The GNU General Public License, Version 3, 2007. Available at: http://www.gnu.org/licenses/gpl.html). The software itself can be found at http://code.google.com/p/mymoldb/.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Sistemas de Gerenciamento de Base de Dados/economia , Sistemas de Gerenciamento de Base de Dados/tendências , Bases de Dados Factuais/economia , Bases de Dados Factuais/tendências , Estrutura Molecular , Ferramenta de Busca/economia , Ferramenta de Busca/tendências , Fatores de Tempo , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...