Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; : 1-17, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908340

RESUMO

This work introduces NexusLIMS, an electron microscopy laboratory information management system designed and implemented by the Office of Data and Informatics and the Materials Science and Engineering Division at NIST for a multi-user electron microscopy co-op facility. NexusLIMS comprises network infrastructure, shared information technology resources, a custom software package to harvest and extract experimental information and construct experimental metadata records, and an intuitive web-based user-facing interface for searching, browsing, and examining research data. These metadata records conform to the Nexus Experiment schema, which is introduced in this work. The NexusLIMS suite of tools requires minimal input and adjustments to user behavior, instead relying on existing organizational procedures and the collection of information from a multitude of sources to construct a complete picture and record of a research experiment. The underlying infrastructure and design considerations for a multi-user data management system are discussed. The core codebase for NexusLIMS is made publicly available alongside this work, and its modular design encourages the adaptation of the presented methods at other research organizations.

2.
Stud Conserv ; 652020.
Artigo em Inglês | MEDLINE | ID: mdl-32103842

RESUMO

Zinc (carboxylate) soaps, formed by reactions between zinc oxide (ZnO) and fatty acids in a drying oil, are known to cause deterioration in the paint layers of modern and contemporary oil paintings. This study investigates zinc carboxylates that developed in an oil painting test panel designed to mimic the aging and degradation encountered in actual works of art. Following accelerated and natural aging, protrusions were noted on the surface of the test panel. A large protrusion with erupted gel features was extracted from the test panel, mounted in top view, and then cut to reveal the sample's cross section. The gel features, which resulted from the unreacted oil binder's separation from the paint matrix, facilitated zinc carboxylate formation. Using reflectance µ-FTIR and SEM-EDX analysis, the morphologies and spatial distributions of zinc carboxylates within the gel regions of the protrusion were studied. A concentration gradient of zinc within the gel material was observed in the cross-sectional view, indicating patterns of zinc carboxylate formation and migration.

4.
Ultramicroscopy ; 184(Pt A): 24-38, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28841458

RESUMO

FIB/SEM nanotomography (FIB-nt) is a powerful technique for the determination and quantification of the three-dimensional microstructure in subsurface features. Often times, the microstructure of a sample is the ultimate determiner of the overall performance of a system, and a detailed understanding of its properties is crucial in advancing the materials engineering of a resulting device. While the FIB-nt technique has developed significantly in the 15 years since its introduction, advanced nanotomographic analysis is still far from routine, and a number of challenges remain in data acquisition and post-processing. In this work, we present a number of techniques to improve the quality of the acquired data, together with easy-to-implement methods to obtain "advanced" microstructural quantifications. The techniques are applied to a solid oxide fuel cell cathode of interest to the electrochemistry community, but the methodologies are easily adaptable to a wide range of material systems. Finally, results from an analyzed sample are presented as a practical example of how these techniques can be implemented.

5.
Microsc Microanal ; 24(Suppl 1): 486-487, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33033441
6.
Microsc Microanal ; 24(Suppl 1): 752-753, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33033442
7.
Microsc Microanal ; 23(4): 872-877, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28482943

RESUMO

This letter describes an innovative spin-coating system, built from off-the-shelf components, that can easily and inexpensively be integrated into any laboratory environment. Combined with a liquid suspension of conductive polymer, such a "rotary coater" enables simple coating of planar samples to create a physical protective barrier on the sample surface. This barrier aids in charge dissipation during scanning electron microscope and focused ion beam (FIB) imaging and provides wide-scale protection of the sample surface from ion bombardment during FIB imaging and gas-assisted deposition. This polymer layer replaces the localized and time-consuming electron beam deposition step typically performed during transmission electron microscopy lamella preparation. After observation, the coating can be easily removed, if desired. The described spin-coating procedure has minimal cost while providing repeatable positive results, without the need for expensive commercial coating instrumentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...