Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Synapse ; 53(3): 168-75, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15236349

RESUMO

Methylphenidate (MP) (Ritalin) is widely used for the treatment of attention deficit hyperactivity disorder (ADHD). It is a chiral drug, marketed as the racemic mixture of d- and l-threo enantiomers. Our previous studies (PET and microdialysis) in humans, baboons, and rats confirm the notion that pharmacological specificity of MP resides predominantly in the d-isomer. A recent report that intraperitoneally (i.p.) administered l-threo-MP displayed potent, dose-dependent inhibition of cocaine- or apomorphine-induced locomotion in rats, raises the question of whether l-threo-MP has a similar effect when given orally. It has been speculated that l-threo-MP is poorly absorbed in humans when it is given orally because of rapid presystemic metabolism. To investigate whether l-threo-MP or its metabolites can be delivered to the brain when it is given orally, and whether l-threo-MP is pharmacologically active. PET and MicroPET studies were carried out in baboons and rats using orally delivered C-11-labeled d- and l-threo-MP ([methyl-(11)C]d-threo-MP and [methyl-(11)C]l-threo-MP). In addition, we assessed the effects of i.p. l-threo-MP on spontaneous and cocaine-stimulated locomotor activity in mice. There was a higher global uptake of carbon-11 in both baboon and rat brain for oral [(11)C]l-threo-MP than for oral [(11)C]d-threo-MP. Analysis of the chemical form of radioactivity in rat brain after [(11)C]d-threo-MP indicated mainly unchanged tracer, whereas with [(11)C]l-threo-MP, it was mainly a labeled metabolite. The possibility that this labeled metabolite might be [(11)C]methanol or [(11)C]CO(2), derived from demethylation, was excluded by ex vivo studies in rats. When l-threo-MP was given i.p. to mice at a dose of 3 mg/kg, it neither stimulated locomotor activity nor inhibited the increased locomotor activity due to cocaine administration. These results suggest that, in animal models, l-threo-MP or its metabolite(s) is (are) absorbed from the gastrointestinal tract and enters the brain after oral administration, but that l-threo-MP may not be pharmacologically active. These results are pertinent to the question of whether l-threo-MP contributes to the behavioral and side effect profile of MP during treatment of ADHD.


Assuntos
Encéfalo/efeitos dos fármacos , Metilfenidato/farmacocinética , Farmacocinética , Administração Oral , Adsorção/efeitos dos fármacos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Sinergismo Farmacológico , Feminino , Isomerismo , Masculino , Metilfenidato/análogos & derivados , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Papio , Ratos , Ratos Sprague-Dawley , Tomografia Computadorizada de Emissão
2.
Alcohol Clin Exp Res ; 28(5): 720-8, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15166646

RESUMO

BACKGROUND: Transient overexpression of the dopamine D2 receptor (DRD2) gene in the nucleus accumbens (NAc) using an adenoviral vector has been associated with a significant decrease in alcohol intake in Sprague Dawley rats. This overexpression of DRD2 reduced alcohol consumption in a two-bottle-choice paradigm and supported the view that high levels of DRD2 may be protective against alcohol abuse. METHODS: Using a limited access (1 hr) two-bottle-choice (water versus 10% ethanol) drinking paradigm, we examined the effects of the DRD2 vector in alcohol intake in the genetically inbred alcohol-preferring (P) and -nonpreferring (NP) rats. In addition, micro-positron emission tomography imaging was used at the completion of the study to assess in vivo the chronic (7 weeks) effects of ethanol exposure on DRD2 levels between the two groups. RESULTS: P rats that were treated with the DRD2 vector (in the NAc) significantly attenuated their alcohol preference (37% decrease) and intake (48% decrease), and these measures returned to pretreatment levels by day 20. A similar pattern of behavior (attenuation of ethanol drinking) was observed in NP rats. Analysis of the [C]raclopride micro-positron emission tomography data after chronic (7 weeks) exposure to ethanol revealed clear DRD2 binding differences between the P and NP rats. P rats showed 16% lower [C]raclopride specific binding in striatum than the NP rats. CONCLUSIONS: These findings further support our hypothesis that high levels of DRD2 are causally associated with a reduction in alcohol consumption and may serve as a protective factor against alcoholism. That this effect was seen in P rats, which are predisposed to alcohol intake, suggests that they are protective even in those who are genetically predisposed to high alcohol intake. It is noteworthy that increasing DRD2 significantly decreased alcohol intake but did not abolish it, suggesting that high DRD2 levels may specifically interfere with the administration of large quantities of alcohol. The significantly higher DRD2 concentration in NP than P rats after 7 weeks of ethanol therefore could account for low alcohol intake.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Técnicas de Transferência de Genes , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/metabolismo , Consumo de Bebidas Alcoólicas/genética , Animais , Etanol/administração & dosagem , Masculino , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/genética , Autoadministração , Especificidade da Espécie
3.
J Nucl Med ; 44(5): 815-22, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12732684

RESUMO

UNLABELLED: A new generation of commercial animal PET cameras may accelerate drug development by streamlining preclinical testing in laboratory animals. However, little information on the feasibility of using these machines for quantitative PET in small animals is available. Here we investigate the reproducibility of microPET imaging of (11)C-raclopride in the rat brain and the effects of tracer-specific activity and photon scatter correction on measures of D2 receptor (D2R) availability. METHODS: Sprague-Dawley rats (422 +/- 29 g; n = 7) were anesthetized with ketamine/xylazine and catheterized for tail vein injection of (11)C-raclopride. Each animal was positioned prone in the microPET, centering the head in the field of view. MicroPET data was collected for 60 min-starting at (11)C-raclopride injection-and binned into 24 time frames (6 x 10 s, 3 x 20 s, 8 x 60 s, 4 x 200 s, 3 x 600 s). In 3 studies, (11)C-raclopride was administered a second time in the same animal, with 2-4 h between injections. In a fourth animal, raclopride (1 mg/kg) was coinjected with (11)C-raclopride for the second injection. Three rats received a single dose of (11)C-raclopride. The range of doses for all studies was 6.11-18.54 MBq (165-501 micro Ci). The specific activity at injection was 4.07-48.1 GBq/ micro mol (0.11-1.3 Ci/ micro mol). Region-of-interest analysis was performed and the distribution volume ratio (DVR) was computed for striatum/cerebellum using sinograms uncorrected and corrected for scatter using a tail-fit method. RESULTS: Test-retest results showed that the (11)C-raclopride microPET DVR was reproducible (change in DVR = -8.3% +/- 4.4%). The average DVR from 6 rats injected with high specific activity (<4 nmol/kg) was 2.43 +/- 0.19 (coefficient of variation = 8%). The DVR for the blocking study was 1.23. The DVR depended on the mass of tracer (11)C-raclopride injected for doses >1.5 nmol/kg. Scatter fractions within the rat head were approximately 25%-45% resulting in an average increase of DVR of 3.5% (range, 0%-10%) after correction. CONCLUSION: This study shows that the (11)C-raclopride microPET-derived DVR is reproducible and suitable for studying D2R availability in the rat brain. MicroPET sensitivity was sufficient to determine reproducible DVRs from (11)C-raclopride injections of 9.25 MBq (approximately 250 micro Ci). However, the effect of tracer mass on the DVR should be considered for studies using more than approximately 1-2 nmol/kg raclopride, and scatter correction has a measurable impact on the results.


Assuntos
Radioisótopos de Carbono , Racloprida/metabolismo , Receptores de Dopamina D2/análise , Espalhamento de Radiação , Tomografia Computadorizada de Emissão , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
4.
J Nucl Med ; 43(11): 1570-7, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12411561

RESUMO

UNLABELLED: The use of mice with targeted gene deletions (knockouts [KOs]) provides an important tool to investigate the mechanisms underlying behavior, neuronal development, and the sequella of neuropsychiatric diseases. MRI has been used to image brain structural changes in KO mice but, to our knowledge, the feasibility of using PET to investigate brain neurochemistry in KO mice has not been demonstrated. METHODS: We have evaluated the sensitivity of the microPET to image dopamine D2 receptor (DRD2) KO mice (D2-/-). PET measurements were performed in wild-type (D2+/+) mice and KO (D2-/-) mice using a microPET scanner. Briefly, each animal was anesthetized and injected intravenously with (11)C-raclopride, a DRD2-specific ligand, and dynamic PET scanning was performed for 60 min. RESULTS: The (11)C-raclopride images of the KO mice showed significantly lower binding in the striatum (ST) than those of the wild-type (WT) mice, which was confirmed by the time-activity curves that revealed equivalent binding in the ST and cerebellum (CB) in KO mice, whereas the WT mice had significantly higher binding in the ST than in the CB. The ST/CB ratio was significantly higher in WT mice than in KO mice (ST/CB = 1.33 +/- 0.13 and 1.05 +/- 0.03, respectively; P < 0.002; n = 10). The microPET images were compared qualitatively with conventional autoradiography images. CONCLUSION: These data support the use of microPET as an effective in vivo imaging tool for studying noninvasively KO mice. These same tools can be extended to investigate other genetically engineered murine models of disease. Future studies will seek to use microPET to investigate the relationships between genes, neuronal activity, and behavior.


Assuntos
Encéfalo/metabolismo , Radioisótopos de Carbono , Antagonistas de Dopamina , Racloprida , Compostos Radiofarmacêuticos , Receptores de Dopamina D2/metabolismo , Tomografia Computadorizada de Emissão , Animais , Autorradiografia , Encéfalo/diagnóstico por imagem , Estudos de Viabilidade , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Dopamina D2/genética , Sensibilidade e Especificidade , Tomografia Computadorizada de Emissão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...