Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell Rep ; 41(3): 111522, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36261007

RESUMO

Like other pathogens, parasitic helminths can rapidly evolve resistance to drug treatment. Understanding the genetic basis of anthelmintic drug resistance in parasitic nematodes is key to tracking its spread and improving the efficacy and sustainability of parasite control. Here, we use an in vivo genetic cross between drug-susceptible and multi-drug-resistant strains of Haemonchus contortus in a natural host-parasite system to simultaneously map resistance loci for the three major classes of anthelmintics. This approach identifies new alleles for resistance to benzimidazoles and levamisole and implicates the transcription factor cky-1 in ivermectin resistance. This gene is within a locus under selection in ivermectin-resistant populations worldwide; expression analyses and functional validation using knockdown experiments support that cky-1 is associated with ivermectin survival. Our work demonstrates the feasibility of high-resolution forward genetics in a parasitic nematode and identifies variants for the development of molecular diagnostics to combat drug resistance in the field.


Assuntos
Anti-Helmínticos , Ivermectina , Ivermectina/farmacologia , Levamisol , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Resistência a Medicamentos/genética , Benzimidazóis , Genômica , Fatores de Transcrição
2.
PLoS Pathog ; 18(6): e1010545, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696434

RESUMO

The antiparasitic drug ivermectin plays an essential role in human and animal health globally. However, ivermectin resistance is widespread in veterinary helminths and there are growing concerns of sub-optimal responses to treatment in related helminths of humans. Despite decades of research, the genetic mechanisms underlying ivermectin resistance are poorly understood in parasitic helminths. This reflects significant uncertainty regarding the mode of action of ivermectin in parasitic helminths, and the genetic complexity of these organisms; parasitic helminths have large, rapidly evolving genomes and differences in evolutionary history and genetic background can confound comparisons between resistant and susceptible populations. We undertook a controlled genetic cross of a multi-drug resistant and a susceptible reference isolate of Haemonchus contortus, an economically important gastrointestinal nematode of sheep, and ivermectin-selected the F2 population for comparison with an untreated F2 control. RNA-seq analyses of male and female adults of all populations identified high transcriptomic differentiation between parental isolates, which was significantly reduced in the F2, allowing differences associated specifically with ivermectin resistance to be identified. In all resistant populations, there was constitutive upregulation of a single gene, HCON_00155390:cky-1, a putative pharyngeal-expressed transcription factor, in a narrow locus on chromosome V previously shown to be under ivermectin selection. In addition, we detected sex-specific differences in gene expression between resistant and susceptible populations, including constitutive upregulation of a P-glycoprotein, HCON_00162780:pgp-11, in resistant males only. After ivermectin selection, we identified differential expression of genes with roles in neuronal function and chloride homeostasis, which is consistent with an adaptive response to ivermectin-induced hyperpolarisation of neuromuscular cells. Overall, we show the utility of a genetic cross to identify differences in gene expression that are specific to ivermectin selection and provide a framework to better understand ivermectin resistance and response to treatment in parasitic helminths.


Assuntos
Anti-Helmínticos , Haemonchus , Nematoides , Animais , Anti-Helmínticos/farmacologia , Cloretos/metabolismo , Cloretos/farmacologia , Resistência a Medicamentos/genética , Feminino , Homeostase , Ivermectina/metabolismo , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Masculino , Nematoides/genética , Plasticidade Neuronal , Ovinos/genética , Transcriptoma
3.
Am J Hum Genet ; 107(3): 473-486, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32781046

RESUMO

Africa contains more human genetic variation than any other continent, but the majority of the population-scale analyses of the African peoples have focused on just two of the four major linguistic groups, the Niger-Congo and Afro-Asiatic, leaving the Nilo-Saharan and Khoisan populations under-represented. In order to assess genetic variation and signatures of selection within a Nilo-Saharan population and between the Nilo-Saharan and Niger-Congo and Afro-Asiatic, we sequenced 50 genomes from the Nilo-Saharan Lugbara population of North-West Uganda and 250 genomes from 6 previously unsequenced Niger-Congo populations. We compared these data to data from a further 16 Eurasian and African populations including the Gumuz, another putative Nilo-Saharan population from Ethiopia. Of the 21 million variants identified in the Nilo-Saharan population, 3.57 million (17%) were not represented in dbSNP and included predicted non-synonymous mutations with possible phenotypic effects. We found greater genetic differentiation between the Nilo-Saharan Lugbara and Gumuz populations than between any two Afro-Asiatic or Niger-Congo populations. F3 tests showed that Gumuz contributed a genetic component to most Niger-Congo B populations whereas Lugabara did not. We scanned the genomes of the Lugbara for evidence of selective sweeps. We found selective sweeps at four loci (SLC24A5, SNX13, TYRP1, and UVRAG) associated with skin pigmentation, three of which already have been reported to be under selection. These selective sweeps point toward adaptations to the intense UV radiation of the Sahel.


Assuntos
Adaptação Fisiológica/genética , Variação Genética/genética , Seleção Genética/genética , Pigmentação da Pele/genética , Antiporters/genética , População Negra/genética , Gerenciamento de Dados , Etiópia/epidemiologia , Feminino , Genética Populacional , Genoma Humano/genética , Haplótipos/genética , Humanos , Masculino , Glicoproteínas de Membrana/genética , Oxirredutases/genética , Polimorfismo de Nucleotídeo Único/genética , Nexinas de Classificação/genética , Proteínas Supressoras de Tumor/genética , Uganda/epidemiologia
4.
Genome Biol Evol ; 10(2): 396-409, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29267942

RESUMO

The parasitic nematode Haemonchus contortus is an economically and clinically important pathogen of small ruminants, and a model system for understanding the mechanisms and evolution of traits such as anthelmintic resistance. Anthelmintic resistance is widespread and is a major threat to the sustainability of livestock agriculture globally; however, little is known about the genome architecture and parameters such as recombination that will ultimately influence the rate at which resistance may evolve and spread. Here, we performed a genetic cross between two divergent strains of H. contortus, and subsequently used whole-genome resequencing of a female worm and her brood to identify the distribution of genome-wide variation that characterizes these strains. Using a novel bioinformatic approach to identify variants that segregate as expected in a pseudotestcross, we characterized linkage groups and estimated genetic distances between markers to generate a chromosome-scale F1 genetic map. We exploited this map to reveal the recombination landscape, the first for any helminth species, demonstrating extensive variation in recombination rate within and between chromosomes. Analyses of these data also revealed the extent of polyandry, whereby at least eight males were found to have contributed to the genetic variation of the progeny analyzed. Triploid offspring were also identified, which we hypothesize are the result of nondisjunction during female meiosis or polyspermy. These results expand our knowledge of the genetics of parasitic helminths and the unusual life-history of H. contortus, and enhance ongoing efforts to understand the genetic basis of resistance to the drugs used to control these worms and for related species that infect livestock and humans throughout the world. This study also demonstrates the feasibility of using whole-genome resequencing data to directly construct a genetic map in a single generation cross from a noninbred nonmodel organism with a complex lifecycle.


Assuntos
Hemoncose/parasitologia , Hemoncose/veterinária , Haemonchus/genética , Recombinação Genética , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Feminino , Ligação Genética , Variação Genética , Masculino , Poliploidia
5.
Ticks Tick Borne Dis ; 8(5): 741-748, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28558992

RESUMO

BACKGROUND: Theileriosis is one of the most prevalent infectious diseases of livestock in the Arabian Peninsula, and causes high rates of mortality and morbidity in sheep and cattle. However, there is a paucity of information on the distribution of Theileria spp. over the whole region and their impact on different hosts. The present study carried out a country-wide molecular survey for Theileria spp. of livestock in Oman across four governorates. The aim of the survey was to define the prevalence of Theileria spp. in cattle, sheep and goats, highlight risk factors for infection and identify the main tick species involved in parasite transmission. MATERIAL AND METHODS: A total of 2020 animals were examined in the survey consisting of sheep [n=592], goats [n=981] and cattle [n=447]. All three species were raised and co-grazed on the same farms. Theileria parasites were detected using PCR-RFLP and RLB of the 18S rRNA gene. Cloning and sequencing of the 18S rRNA was carried out on 11 T. lestoquardi isolates from Ash-Sharqiyah, and Ad-Dhahira governorates, and phylogenetic relationships were inferred using additional sequences of T. lestoquardi, T. annulata and T. ovis available in GenBank. RESULTS: Theileria spp. prevalence was 72.3%, 36.7% and 2.7% among cattle, sheep and goats, respectively. Strong similarity in results was obtained using RLB and PCR-RFLP for detection of Theileria spp. however, RLB detected a higher rate of mixed infection than PCR-RFPL (P<0.001). Theileria annulata was the only parasite detected in cattle, while sheep and goats carried T. ovis, T. lestoquardi and T. annulata as well as Theileria spp. OT1. Of the four Theileria spp. detected in small ruminants, overall T. ovis was most prevalent (sheep [33.4%], goats [2.0%]), whereas T. lestoquardi was less prevalent (sheep [22.0%], goats [0.5%]). A large proportion of infected sheep (19%) carried mixed infection of T. ovis and T. lestoquardi. However, single T. lestoquardi infections (3.0%) were less prevalent than T. ovis infections (14.5%). Risk of Theileria spp. infection was significantly higher for exotic breeds, relative to native breeds, of cattle (p=0.00002) and sheep (p=0.005). Phylogenetic analysis placed T. lestoquardi in Oman in the same clade as other T. lestoquardi strains isolated from the same regional area (Iraq and Iran). The main tick species, identified on the examined animals, Hyalomma anatolicum, was widely distributed and was found in all of the surveyed governorates. CONCLUSION: Theileria spp. are widespread in Oman with variable prevalence detected in different regions. Two economically important hosts, cattle and sheep are at high risk from virulent T. annulata and T. lestoquardi, respectively. The survey indicates extensive exposure to ticks and transmission of infection that has a significant economic impact. The higher prevalence of T. lestoquardi as mixed rather than single infection requires further investigation.


Assuntos
Doenças dos Bovinos/epidemiologia , Doenças das Cabras/epidemiologia , Doenças dos Ovinos/epidemiologia , Theileria/isolamento & purificação , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Feminino , Doenças das Cabras/parasitologia , Cabras , Masculino , Omã/epidemiologia , Filogenia , Prevalência , RNA Bacteriano/genética , RNA Ribossômico 18S/genética , Ovinos , Doenças dos Ovinos/parasitologia , Theileria/genética
6.
Int J Parasitol ; 46(10): 621-30, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27179994

RESUMO

Sheep farmers in the UK rely on strategic anthelmintic use to treat and control gastrointestinal roundworms in their flocks. However, resistance to these drugs is now widespread and threatens the sustainability of sheep production. The mechanisms underlying resistance to the most commonly used class, the macrocyclic lactones, are not known and sensitive diagnostic tools based on molecular markers are not currently available. This prohibits accurate surveillance of resistance or assessment of strategies aimed at controlling its spread. In this study, we examined four UK field populations of Haemonchus contortus, differing in macrocyclic lactone treatment history, for evidence of selection at 'candidate gene' loci identified as determining macrocyclic lactone resistance in previously published research. Individual worms were genotyped at Hc-lgc-37, Hc-glc-5, Hc-avr-14 and Hc-dyf-7, and four microsatellite loci. High levels of polymorphism were identified at the first three candidate gene loci with remarkably little polymorphism at Hc-dyf-7. While some between-population comparisons of individual farms with and without long-term macrocyclic lactone use identified statistically significant differences in allele frequency and/or fixation index at the Hc-lgc-37, Hc-glc-5 or Hc-avr-14 loci, we found no consistent evidence of selection in other equivalent comparisons. While it is possible that different mechanisms are important in different populations or that resistance may be conferred by small changes at multiple loci, our findings suggest that these are unlikely to be major loci conferring macrocyclic lactone resistance on UK farms or suitable for diagnostic marker development. More powerful approaches, using genome-wide or whole genome sequencing, may be required to define macrocyclic lactone resistance loci in such genetically variable populations.


Assuntos
Hemoncose/veterinária , Haemonchus/genética , Lactamas Macrocíclicas/uso terapêutico , Lactonas/uso terapêutico , Doenças dos Ovinos/parasitologia , Animais , Resistência a Medicamentos/genética , Feminino , Frequência do Gene , Variação Genética , Técnicas de Genotipagem , Hemoncose/tratamento farmacológico , Hemoncose/parasitologia , Haemonchus/efeitos dos fármacos , Lactamas Macrocíclicas/farmacologia , Lactonas/farmacologia , Desequilíbrio de Ligação , Polimorfismo de Fragmento de Restrição , Ovinos , Doenças dos Ovinos/tratamento farmacológico , Reino Unido
7.
Infect Genet Evol ; 43: 297-306, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27166095

RESUMO

The Apicomplexan parasites, Theileria lestoquardi and Theileria annulata, the causative agents of theileriosis in small and large ruminants, are widespread in Oman, in areas where cattle, sheep and goats co-graze. Genetic analysis can provide insight into the dynamics of the parasite and the evolutionary relationship between species. Here we identified ten genetic markers (micro- and mini-satellites) spread across the T. lestoquardi genome, and confirmed their species specificity. We then genotyped T. lestoquardi in different regions in Oman. The genetic structures of T. lestoquardi populations were then compared with previously published data, for comparable panels of markers, for sympatric T. annulata isolates. In addition, we examined two antigen genes in T. annulata (Tams1 and Ta9) and their orthologues in T. lestoquardi (Tlms1 and Tl9). The genetic diversity and multiplicity of infection (MOI) were lower in T. lestoquardi (He=0.64-0.77) than T. annulata (He=0.83-0.85) in all populations. Very limited genetic differentiation was found among T. lestoquardi and T. annulata populations. In contrast, limited but significant linkage disequilibrium was observed within regional populations of each species. We identified eight T. annulata isolates in small ruminants; the diversity and MOI were lower among ovine/caprine compared to bovine. Sequence diversity of the antigen genes, Tams1 and Ta9 in T. annulata (π=0.0733 and π=0.155 respectively), was 10-fold and 3-fold higher than the orthologous Tlms1 and Tl9 in T. lestoquardi (π=0.006 and π=0.055, respectively). Despite a comparably high prevalence, T. lestoquardi has lower genetic diversity compared to sympatric T. annulata populations. There was no evidence of differentiation among populations of either species. In comparison to T. lestoquardi, T. annulata has a larger effective population size. While genetic exchange and recombination occur in both parasite species, the extent of diversity, overall, is less for T. lestoquardi. It is, therefore, likely that T. lestoquardi evolved from an ancestor of present day T. annulata and that this occurred either once or on a limited number of occasions.


Assuntos
Variação Genética , Genoma de Protozoário , Filogenia , Simpatria , Theileria annulata/genética , Theileria/genética , Theileriose/epidemiologia , Animais , Evolução Biológica , Bovinos , Marcadores Genéticos , Genótipo , Cabras/parasitologia , Especificidade de Hospedeiro , Desequilíbrio de Ligação , Repetições de Microssatélites , Omã/epidemiologia , Prevalência , Carneiro Doméstico/parasitologia , Theileria/classificação , Theileria/patogenicidade , Theileria annulata/classificação , Theileria annulata/patogenicidade , Theileriose/parasitologia , Theileriose/transmissão
8.
Infect Genet Evol ; 42: 14-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27109468

RESUMO

The tick-borne protozoan parasite Theileria annulata causes tropical theileriosis, a severe disease of cattle that occurs across the Mediterranean littoral, the Middle East and Southern Asia. In the Mediterranean region, the disease has long been perceived as being a constraint to livestock production in North Africa and Turkey but was believed to have minimal impact in Southern European countries. It has recently been demonstrated that in Southern Portugal the prevalence of T. annulata is approximately 30%. While the population genetics of the parasite and the multiplicity of infection in the bovine host have been studied in a number of countries, no information is currently available on the composition of the parasite population in Southern Europe or its relationship to populations in bordering regions. A parasite genotyping system, based on micro- and mini-satellite amplification, was used to perform genetic analysis of T. annulata populations from T. annulata infected cattle in twelve farms in Southern Portugal. A diversity of genotypes and a high multiplicity of infection were found, suggesting that the parasite possesses a panmictic population in this region. In comparison with genotypes found in Tunisia and Turkey, parasites from Portugal form a genetically distinct group and show lower genetic diversity.


Assuntos
Variação Genética , Genótipo , Filogenia , Theileria annulata/genética , Theileriose/epidemiologia , Alelos , Animais , Bovinos , Frequência do Gene , Repetições de Microssatélites , Repetições Minissatélites , Tipagem Molecular , Filogeografia , Portugal/epidemiologia , Theileria annulata/classificação , Theileria annulata/isolamento & purificação , Theileriose/parasitologia , Theileriose/transmissão , Carrapatos/parasitologia , Tunísia/epidemiologia , Turquia/epidemiologia
9.
Elife ; 5: e11473, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26809473

RESUMO

Evolutionary theory predicts that the lack of recombination and chromosomal re-assortment in strictly asexual organisms results in homologous chromosomes irreversibly accumulating mutations and thus evolving independently of each other, a phenomenon termed the Meselson effect. We apply a population genomics approach to examine this effect in an important human pathogen, Trypanosoma brucei gambiense. We determine that T.b. gambiense is evolving strictly asexually and is derived from a single progenitor, which emerged within the last 10,000 years. We demonstrate the Meselson effect for the first time at the genome-wide level in any organism and show large regions of loss of heterozygosity, which we hypothesise to be a short-term compensatory mechanism for counteracting deleterious mutations. Our study sheds new light on the genomic and evolutionary consequences of strict asexuality, which this pathogen uses as it exploits a new biological niche, the human population.


Assuntos
Evolução Molecular , Reprodução Assexuada , Trypanosoma brucei gambiense/genética , Humanos , Metagenômica , Mutação , Tripanossomíase/parasitologia
10.
PLoS One ; 10(10): e0139581, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26469349

RESUMO

BACKGROUND: Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. METHODS: Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. RESULTS: We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075, θ = 0.07) were detected when the data for T. annulata parasites in Oman was compared with that previously generated for Turkey and Tunisia. CONCLUSION: Genetic analyses of T. annulata samples representing four geographical regions in Oman revealed a high level of genetic diversity in the parasite population. There was little evidence of genetic differentiation between parasites from different regions, and a high level of genetic diversity was maintained within each sub-population. These findings are consistent with a high parasite transmission rate and frequent movement of animals between different regions in Oman.


Assuntos
Polimorfismo Genético , Theileria annulata/genética , Animais , Bovinos , Feminino , Frequência do Gene , Loci Gênicos/genética , Marcadores Genéticos/genética , Genômica , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Repetições Minissatélites/genética , Omã , Theileria annulata/fisiologia
11.
Methods Mol Biol ; 1201: 91-107, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25388109

RESUMO

Elucidating the underlying genetic determinants of disease pathology is still in the early stages for many pathogenic parasites. There have, however, been a number of advances in which natural genetic diversity has been successfully utilized to untangle the often complex interactions between parasite and host. In this chapter we discuss various methods capable of exploiting this natural genetic variation to determine genes involved in phenotypes of interest, using virulence in the pathogenic parasite Trypanosoma brucei as a case study. This species is an ideal system to benefit from such an approach as there are several well-characterized laboratory strains; the parasite undergoes genetic exchange in both the field and the laboratory, and is amenable to efficient reverse genetics and RNAi.


Assuntos
Variação Genética , Locos de Características Quantitativas , Trypanosoma brucei brucei/genética , Trypanosoma/genética , Trypanosoma/patogenicidade , Virulência/genética , Genética/tendências , Interações Hospedeiro-Parasita/genética , Fenótipo , Trypanosoma brucei brucei/patogenicidade
12.
Nucleic Acids Res ; 42(11): 7113-31, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24799432

RESUMO

Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5' ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct.


Assuntos
Variação Antigênica , Babesia/genética , Evolução Molecular , Genes de Protozoários , Interações Hospedeiro-Parasita/genética , Pontos de Quebra do Cromossomo , Genoma de Protozoário , Proteínas de Protozoários/genética , Recombinação Genética
13.
J Antimicrob Chemother ; 69(3): 651-63, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24235095

RESUMO

OBJECTIVES: Trypanosoma brucei drug transporters include the TbAT1/P2 aminopurine transporter and the high-affinity pentamidine transporter (HAPT1), but the genetic identity of HAPT1 is unknown. We recently reported that loss of T. brucei aquaglyceroporin 2 (TbAQP2) caused melarsoprol/pentamidine cross-resistance (MPXR) in these parasites and the current study aims to delineate the mechanism by which this occurs. METHODS: The TbAQP2 loci of isogenic pairs of drug-susceptible and MPXR strains of T. brucei subspecies were sequenced. Drug susceptibility profiles of trypanosome strains were correlated with expression of mutated TbAQP2 alleles. Pentamidine transport was studied in T. brucei subspecies expressing TbAQP2 variants. RESULTS: All MPXR strains examined contained TbAQP2 deletions or rearrangements, regardless of whether the strains were originally adapted in vitro or in vivo to arsenicals or to pentamidine. The MPXR strains and AQP2 knockout strains had lost HAPT1 activity. Reintroduction of TbAQP2 in MPXR trypanosomes restored susceptibility to the drugs and reinstated HAPT1 activity, but did not change the activity of TbAT1/P2. Expression of TbAQP2 sensitized Leishmania mexicana promastigotes 40-fold to pentamidine and >1000-fold to melaminophenyl arsenicals and induced a high-affinity pentamidine transport activity indistinguishable from HAPT1 by Km and inhibitor profile. Grafting the TbAQP2 selectivity filter amino acid residues onto a chimeric allele of AQP2 and AQP3 partly restored susceptibility to pentamidine and an arsenical. CONCLUSIONS: TbAQP2 mediates high-affinity uptake of pentamidine and melaminophenyl arsenicals in trypanosomes and TbAQP2 encodes the previously reported HAPT1 activity. This finding establishes TbAQP2 as an important drug transporter.


Assuntos
Aquagliceroporinas/metabolismo , Resistência a Medicamentos , Melarsoprol/metabolismo , Pentamidina/metabolismo , Tripanossomicidas/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Alelos , Transporte Biológico , Genes de Protozoários , Análise de Sequência de DNA
14.
PLoS Negl Trop Dis ; 7(11): e2526, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24244771

RESUMO

African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics.


Assuntos
Genética Populacional/métodos , Trypanosoma brucei rhodesiense/genética , Animais , DNA de Protozoário/genética , Genótipo , Humanos , Malaui , Trypanosoma brucei rhodesiense/classificação , Tripanossomíase Africana/epidemiologia , Uganda
15.
Cardiovasc Res ; 100(2): 325-35, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23892734

RESUMO

AIMS: African trypanosomiasis, caused by Trypanosoma brucei species, leads to both neurological and cardiac dysfunction and can be fatal if untreated. While the neurological-related pathogenesis is well studied, the cardiac pathogenesis remains unknown. The current study exposed isolated ventricular cardiomyocytes and adult rat hearts to T. brucei to test whether trypanosomes can alter cardiac function independent of a systemic inflammatory/immune response. METHODS AND RESULTS: Using confocal imaging, T. brucei and T. brucei culture media (supernatant) caused an increased frequency of arrhythmogenic spontaneous diastolic sarcoplasmic reticulum (SR)-mediated Ca(2+) release (Ca(2+) waves) in isolated adult rat ventricular cardiomyocytes. Studies utilising inhibitors, recombinant protein and RNAi all demonstrated that this altered SR function was due to T. brucei cathepsin-L (TbCatL). Separate experiments revealed that TbCatL induced a 10-15% increase of SERCA activity but reduced SR Ca(2+) content, suggesting a concomitant increased SR-mediated Ca(2+) leak. This conclusion was supported by data demonstrating that TbCatL increased Ca(2+) wave frequency. These effects were abolished by autocamtide-2-related inhibitory peptide, highlighting a role for CaMKII in the TbCatL action on SR function. Isolated Langendorff perfused whole heart experiments confirmed that supernatant caused an increased number of arrhythmic events. CONCLUSION: These data demonstrate for the first time that African trypanosomes alter cardiac function independent of a systemic immune response, via a mechanism involving extracellular cathepsin-L-mediated changes in SR function.


Assuntos
Arritmias Cardíacas/etiologia , Cálcio/metabolismo , Catepsina L/fisiologia , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/fisiologia , Trypanosoma brucei brucei/enzimologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Catepsina L/antagonistas & inibidores , Masculino , Contração Miocárdica , Ratos , Ratos Wistar , Receptores Adrenérgicos beta/fisiologia
16.
PLoS One ; 8(7): e67852, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844111

RESUMO

BACKGROUND: Trypanosoma brucei is the causative agent of African Sleeping Sickness in humans and contributes to the related veterinary disease, Nagana. T. brucei is segregated into three subspecies based on host specificity, geography and pathology. T. b. brucei is limited to animals (excluding some primates) throughout sub-Saharan Africa and is non-infective to humans due to trypanolytic factors found in human serum. T. b. gambiense and T. b. rhodesiense are human infective sub-species. T. b. gambiense is the more prevalent human, causing over 97% of human cases. Study of T. b. gambiense is complicated in that there are two distinct groups delineated by genetics and phenotype. The relationships between the two groups and local T. b. brucei are unclear and may have a bearing on the evolution of the human infectivity traits. METHODOLOGY/PRINCIPAL FINDINGS: A collection of sympatric T. brucei isolates from Côte d'Ivoire, consisting of T. b. brucei and both groups of T. b. gambiense have previously been categorized by isoenzymes, RFLPs and Blood Incubation Infectivity Tests. These samples were further characterized using the group 1 specific marker, TgSGP, and seven microsatellites. The relationships between the T. b. brucei and T. b. gambiense isolates were determined using principal components analysis, neighbor-joining phylogenetics, STRUCTURE, FST, Hardy-Weinberg equilibrium and linkage disequilibrium. CONCLUSIONS/SIGNIFICANCE: Group 1 T. b. gambiense form a clonal genetic group, distinct from group 2 and T. b. brucei, whereas group 2 T. b. gambiense are genetically indistinguishable from local T. b. brucei. There is strong evidence for mating within and between group 2 T. b. gambiense and T. b. brucei. We found no evidence to support the hypothesis that group 2 T. b. gambiense are hybrids of group 1 and T. b. brucei, suggesting that human infectivity has evolved independently in groups 1 and 2 T. b. gambiense.


Assuntos
Trypanosoma brucei brucei/genética , Trypanosoma brucei gambiense/genética , Tripanossomíase Africana/parasitologia , Animais , Côte d'Ivoire , Marcadores Genéticos/genética , Genética Populacional , Genótipo , Humanos , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Filogenia , Análise de Componente Principal , Suínos , Trypanosoma brucei brucei/classificação , Trypanosoma brucei gambiense/classificação
17.
Exp Parasitol ; 133(2): 222-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23183165

RESUMO

Tropical theileriosis, bovine babesiosis and anaplasmosis are tick-borne protozoan diseases that impose serious constraints on the health and productivity of domestic cattle in tropical and sub-tropical regions of the world. A common feature of these diseases is that, following recovery from primary infection, animals become persistent carriers of the pathogen and continue to play a critical role in disease epidemiology, acting as reservoirs of infection. This study describes development and evaluation of multiplex and single PCR assays for simultaneous detection of Theileria annulata, Babesia bovis and Anaplasma marginale in cattle. Following in silico screening for candidate target genes representing each of the pathogens, an optimised multiplex PCR assay was established using three primer sets, cytob1, MAR1bB2 and bovar2A, for amplification of genomic DNA of T. annulata, A. marginale and B. bovis respectively. The designed primer sets were found to be species-specific, generating amplicons of 312, 265 and 166 base pairs, respectively and were deemed suitable for the development of a multiplex assay. The sensitivity of each primer pair was evaluated using serial dilutions of parasite DNA, while specificity was confirmed by testing for amplification from DNA of different stocks of each pathogen and other Theileria, Babesia and Anaplasma species. Additionally, DNA preparations derived from field samples were used to evaluate the utility of the single and multiplex PCRs for determination of infection status. The multiplex PCR was found to detect each pathogen species with the same level of sensitivity, irrespective of whether its DNA was amplified in isolation or together with DNA representing the other pathogens. Moreover, single and multiplex PCRs were able to detect each species with equal sensitivity in serially diluted DNA representing mixtures of T. annulata, B. bovis and A. marginale, and no evidence of non-specific amplification from non-target species was observed. Validation that the multiplex PCR efficiently detects single and mixed infections from field samples was demonstrated. The developed assay represents a simple and efficient diagnostic for co-detection of tropical theileriosis, bovine babesiosis and anaplasmosis, and may be a valuable tool for epidemiological studies aimed at assessing the burden of multiple infection with tick-borne pathogens and improving control of the associated diseases in endemic regions.


Assuntos
Anaplasma marginale/isolamento & purificação , Babesia bovis/isolamento & purificação , Doenças dos Bovinos/diagnóstico , Reação em Cadeia da Polimerase Multiplex/veterinária , Theileria annulata/isolamento & purificação , Anaplasma marginale/genética , Anaplasmose/diagnóstico , Anaplasmose/parasitologia , Animais , Babesia bovis/genética , Babesiose/diagnóstico , Babesiose/parasitologia , Babesiose/veterinária , Bovinos , Doenças dos Bovinos/parasitologia , Clonagem Molecular , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Eletroforese em Gel de Ágar/veterinária , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Multiplex/normas , Sensibilidade e Especificidade , Análise de Sequência de DNA , Theileria annulata/genética , Theileriose/diagnóstico , Theileriose/parasitologia , Turquia
18.
Appl Environ Microbiol ; 78(10): 3523-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22389374

RESUMO

Recent studies have revealed extensive genetic variation among isolates of Cryptosporidium parvum, an Apicomplexan parasite that causes gastroenteritis in both humans and animals worldwide. The parasite's population structure is influenced by the intensity of transmission, the host-parasite interaction, and husbandry practices. As a result, C. parvum populations can be panmictic, clonal, or even epidemic on both a local scale and a larger geographical scale. To extend the study of C. parvum populations to an unexplored region, 173 isolates of C. parvum collected in Italy from humans and livestock (calf, sheep, and goat) over a 10-year period were genotyped using a multilocus scheme based on 7 mini- and microsatellite loci. In agreement with other studies, extensive polymorphism was observed, with 102 distinct multilocus genotypes (MLGs) identified among 173 isolates. The presence of linkage disequilibrium, the confinement of MLGs to individual farms, and the relationship of many MLGs inferred using network analysis (eBURST) suggest a predominantly clonal population structure, but there is also evidence that part of the diversity can be explained by genetic exchange. MLGs from goats were found to differ from bovine and sheep MLGs, supporting the existence of C. parvum subpopulations. Finally, MLGs from isolates collected between 1997 and 1999 were also identified as a distinct subgroup in principal-component analysis and eBURST analysis, suggesting a continuous introduction of novel genotypes in the parasite population.


Assuntos
Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium parvum/classificação , Cryptosporidium parvum/isolamento & purificação , Variação Genética , Animais , Bovinos , Análise por Conglomerados , Cryptosporidium parvum/genética , Genótipo , Cabras , Humanos , Itália/epidemiologia , Repetições de Microssatélites , Epidemiologia Molecular , Ovinos
19.
Vet Parasitol ; 181(1): 61-8, 2011 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-21570772

RESUMO

In the last decade, there has been a wide range of studies using a series of molecular markers to investigate the genotypic diversity of some of the important species of African trypanosomes. Here, we review this work and provide an update of our current understanding of the mechanisms that generate this diversity based on population genetic analysis. In parallel with field based studies, our knowledge of the key features of the system of genetic exchange in Trypanosoma brucei, based on laboratory analysis, has reached the point at which this system can be used as a tool to determine the genetic basis of a phenotype. In this context, we have outlined our current knowledge of the basis for phenotypic variation among strains of trypanosomes, and highlight that this is a relatively under researched area, except for work on drug resistance. There is clear evidence for 'strain'-specific variation in tsetse transmission, a range of virulence/pathogenesis phenotypes and the ability to cross the blood brain barrier. The potential for using genetic analysis to dissect these phenotypes is illustrated by the recent work defining a locus determining organomegaly for T. brucei. When these results are considered in relation to the body of research on the variability of the host response to infection, it is clear that there is a need to integrate the study of host and parasite diversity in relation to understanding infection outcome.


Assuntos
Variação Genética , Trypanosoma brucei brucei/genética , Animais , Epidemiologia Molecular , Fenótipo , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia , Virulência
20.
Mol Biochem Parasitol ; 177(2): 106-15, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21316400

RESUMO

The tick-borne protozoan parasite, Babesia bovis is one of the causes of bovine babesiosis, an economically important disease of cattle in tropical and sub-tropical countries. Using the recently published genome sequence of the parasite, we developed a panel of eight mini- and micro-satellite markers and used these to investigate the role of genetic exchange in the population structure and diversity of the parasite using isolates from Zambia and Turkey. This population genetic analysis showed that genetic exchange occurs and that there are high levels of genetic diversity, with geographical sub-structuring quantified using Wright's F Index. Linkage disequilibrium was observed when isolates from both countries were treated as one population, but when isolates from Zambia were analysed separately linkage equilibrium was observed. The Turkish isolates were sub-structured, containing two genetically distinct sub-groups, both of which appeared to be in linkage equilibrium. The results of the Zambian study suggest that a sub-set of the parasite population is responsible for the westward spread of babesiosis into the previously disease-free central region of the country. The Zambian isolates had a significantly higher number of genotypes per sample than those from Turkey and age was found to be a significant predictor of the multiplicity of infection. The high levels of diversity seen in the Zambian and Turkish B. bovis populations have implications in the development of subunit vaccines against the disease and the spread of drug resistance.


Assuntos
Babesia bovis/classificação , Babesia bovis/genética , Repetições de Microssatélites , Polimorfismo Genético , Animais , Babesia bovis/isolamento & purificação , Babesiose/parasitologia , Babesiose/veterinária , Bovinos , Doenças dos Bovinos/parasitologia , Análise por Conglomerados , Genótipo , Desequilíbrio de Ligação , Recombinação Genética , Turquia , Zâmbia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...