Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Juntendo Iji Zasshi ; 69(1): 42-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38854847

RESUMO

Objectives: The role of autophagy in pancreatic ß cells has been reported, but the relationship between autophagy and insulin metabolism is complex and is not fully understood yet. Design: We here analyze the relationship between autophagy and insulin metabolism from a morphological aspect. Methods: We observe the morphological changes of ß cell-specific Atg7-deficient mice and Atg5-deficient MIN6 cells with electron microscopy. Results: We find that Atg7-deficient ß cells exhibit a marked expansion of the endoplasmic reticulum (ER). We also find that the inhibitory state of insulin secretion causes morphological changes in the Golgi, including ministacking and swelling. The same morphological alterations are observed when insulin secretion is suppressed in Atg5-deficient MIN6 cells. Conclusions: The defect of autophagy induces ER expansion, and inhibition of insulin secretion induces Golgi swelling, probably via ER stress and Golgi stress, respectively.

2.
J Mol Biol ; 432(8): 2622-2632, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-31978398

RESUMO

Autophagy is a cellular process that degrades intracellular components, including misfolded proteins and damaged organelles. Many neurodegenerative diseases are considered to progress via the accumulation of misfolded proteins and damaged organelles; therefore, autophagy functions in regulating disease severity. There are at least two types of autophagy (canonical autophagy and alternative autophagy), and canonical autophagy has been applied to therapeutic strategies against various types of neurodegenerative diseases. In contrast, the role of alternative autophagy has not yet been clarified, but it is speculated to be involved in the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Humanos
3.
Cell Death Differ ; 24(9): 1598-1608, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28574506

RESUMO

Programmed cell death, which is required for the development and homeostasis of metazoans, includes mechanisms such as apoptosis, autophagic cell death, and necrotic (or type III) death. Members of the Bcl2 family regulate apoptosis, among which Bax and Bak act as a mitochondrial gateway. Although embryonic fibroblasts from Bax/Bak double-knockout (DKO) mice are resistant to apoptosis, we previously demonstrated that these cells die through an autophagy-dependent mechanism in response to various types of cellular stressors. To determine the physiological role of autophagy-dependent cell death, we generated Atg5/Bax/Bak triple-knockout (TKO) mice, in which autophagy is greatly suppressed compared with DKO mice. Embryonic fibroblasts and thymocytes from TKO mice underwent autophagy much less frequently, and their viability was much higher than DKO cells in the presence of certain cellular stressors, providing genetic evidence that DKO cells undergo Atg5-dependent death. Compared with wild-type embryos, the loss of interdigital webs was significantly delayed in DKO embryos and was even further delayed in TKO embryos. Brain malformation is a distinct feature observed in DKO embryos on the 129 genetic background, but not in those on a B6 background, whereas such malformations appeared in TKO embryos even on a B6 background. Taken together, our data suggest that Atg5-dependent cell death contributes to the embryonic development of DKO mice, implying that autophagy compensates for the deficiency in apoptosis.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Autofagia/genética , Autofagia/fisiologia , Proteína 5 Relacionada à Autofagia/genética , Western Blotting , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...